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Abstract
In recent years there has been growing interest in the existence of strongly
correlated, non-Fermi-liquid states with (incipient) phase transitions at zero
temperature. A unifying model of the dynamical magnetic susceptibility,
χ(q, ω), in the non-Fermi-liquid state at a finite temperature above such
a quantum critical point is presented which addresses the analysis of both
inelastic neutron scattering and thermodynamic experiments on a wide range
of materials. The functional forms and symmetries of χ(q, ω) derived from
these analyses may serve to guide further experimental and theoretical efforts
in elucidating the non-Fermi-liquid state, in addition to furnishing the basis for
semi-microscopical calculations of thermodynamic and transport properties.
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1. Introduction

In recent years there has been growing interest in the existence of strongly correlated, non-
Fermi-liquid states with (incipient) phase transitions at zero temperature and the associated
quantum critical point (QCP). In particular, attention has been focused on those materials
where, at T = 0 K, as a function of some control parameter (concentration of defects or
impurities, external pressure, magnetic or electric field) the system passes through a continuous
phase transition to a new ground state. The QCP occurs at T = 0 K; at this temperature, as
with normal thermal critical points, one associates a timescale with fluctuations of the system
which increases rapidly as the transition is approached; likewise there is a diverging length
scale. Real experiments however take place at finite temperature, so, more precisely, we are
asking, what are the consequences of the T = 0 K transition for physical properties at finite T ?
In particular we address the question of how to model the dynamical magnetic susceptibility,
χ(q, ω), dependent on the wavevector, q, and frequency, ω, in the novel non-Fermi-liquid
phases which exist in the vicinity of a QCP.

There have been a host of thermodynamic and transport measurements on a wide variety
of materials ranging from heavy-fermion metals under conditions of chemical doping or
hydrostatic pressure to high-Tc superconductors, all of which exhibit unusual temperature
dependencies of, for example, the resistivity, ρ(T ), the heat capacity as represented by its
linear term, C/T , and the susceptibility, χ(T ). On account of practicalities, there has been little
direct experimentation on, for example, the pressure dependence of thermodynamic properties
at a fixed and very low temperature [1, 2]. None of this is reviewed here. The regime of
reported non-Fermi-liquid behaviour appears to be broad, and even for systems which are far
from criticality (e.g. at elevated temperatures) there are possible ways to explain anomalous
thermal properties such as non-Fermi-liquid exponents of the resistivity in terms of fluctuations
above a QCP.

The dynamical susceptibility holds a central place in the hierarchy of interpretation of
experimental data. Lying between microscopic theories based directly on the quantum field
and the information derived from scattering, thermodynamic, and transport measurements,
it serves as a point of reference for theoretical and experimental workers alike. For this
reason, derivation, theoretical or empirical, of its functional form is an important step in
building a framework for analysis of a given class of materials. In the following we address
primary information available in the published literature, obtained by means of inelastic
neutron scattering and thermodynamic probes, on the temperature dependence of χ ′′(q, ω)

in strongly correlated paramagnetic materials classified as non-Fermi-liquid systems. A
fundamental question is whether the observed non-Fermi-liquid signatures, which include
non-exponential relaxation (NER) of the magnetization density and associated logarithmic or
power-law divergences of thermodynamic and transport coefficients, arise due to (i) basic
non-exponential relaxation processes, (ii) a superposition of relaxation rates arising from
sample inhomogeneity and/or the experimental technique, or (iii) an intrinsic, thermodynamic
distribution of relaxation rates. Previous fields of inquiry into the non-exponential decay
of the structural, dielectric, and magnetic response of supercooled liquids and glass like
and crystalline phases in the vicinity of their critical points are well documented [3–7]
and, together with recent analyses focused on the non-Fermi-liquid state [8–13], address
the three possible mechanisms. In the particular case of the itinerant non-Fermi liquid, it
appears that a phenomenology based on (i), as for example, in the marginal Fermi liquid [8],
involves sacrificing the basic fermion quasiparticle, a price avoided in alternatives (ii) and (iii).
However, aside from preserving the common Fermiology, these latter works differ substantially
from the present approach which initiates a new point of view based on the self-consistent
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renormalization of the local dynamic susceptibility. The framework which underpins the
interpretation of both kinetic and thermodynamic properties is most succinctly summarized by
the following ansatz. At each wavevector, q, χ(ω) is to be formed as the incoherent sum over
a distribution of relaxation rates, D(�), of the susceptibilities, χ(�;ω), for the relaxational
dispersion of magnetization-density fluctuations with a characteristic rate �:

χ(ω) =
∫

d� D(�)χ(�;ω) (1.1)

where the explicit q-index on both χ and � is suppressed for notational convenience1. In
the case of a single-exponential decay (SED) rate, for example for a normal Fermi liquid, the
distribution, D(�), is tightly clustered about a central value and nothing is gained from the
more general form given above; in contrast, it is precisely the width of the distribution D(�)

that characterizes the NER of the non-Fermi-liquid state. Further, the evolution of D(�) with
temperature, pressure, or doping enables one to map the experimental trajectory through the
non-Fermi-liquid phase.

It will be shown in the following sections that equation (1.1) yields a comprehensive
analysis of both neutron scattering and thermodynamic data on a series of compounds classified
as lying in the non-Fermi-liquid regime. The key (logarithmic) low-temperature divergences
in thermodynamic properties realized on approach to the QCP and a full account of the
microscopic inelastic neutron scattering data are obtained with one, fixed, flat compact (top-
hat) distribution for D(�) for which the lower and upper limits, �1 and �2, scale as the
temperature and are temperature independent respectively. The analytical forms giving this
economic description of the diffusive fluctuation spectra in non-Fermi liquids are laid out in
section 2. To obtain an overview, the practical relevance of this approach may be assessed
by passing directly to the analysis of microscopic and thermodynamic experimental data,
including previous scaling studies of χ(ω), in section 3.

Aside from its simplicity, one fruitful aspect of the analysis given may be its stimulus in
the discussion of the nature of the non-Fermi-liquid state. Amassed evidence points to the
spontaneous formation of dynamical heterogeneities and the critical inference of independent
fluctuations within which the susceptibility is locally renormalized gives both the form of
equation (1.1) and the distribution2 D(�). The degree of renormalization, reflecting an
exquisite sensitivity of the primary response function to its local environment, may be
seen as the defining feature of the non-Fermi-liquid state. The dynamical heterogeneities
which drive local renormalizations of the response function may arise in both the primary
(magnetization-) density and secondary fields—examples of the latter being fluctuations
in local lattice density, orbital current, and crystalline electric field, which couple to the
susceptibility via magnetoelastic and spin–orbit terms. Further experiments and the extension
of equation (1.1) to encompass the response of finite-frequency oscillators under a distribution
of damping rates are discussed in the concluding section and appendix 3.

1 In an alternative viewpoint, if one had sensitive probes and data available, one could imagine a characterization
in terms of the current and charge density and higher-order quadrupole, octopole, etc, response functions. However,
in general the magnetization-density fluctuations are anticipated to be amongst the lowest-lying excitations and the
neutron probe couples in a direct and essentially non-perturbative manner with appropriate (q, ω) resolution and
ranges, making the study of magnetization-density fluctuations an obvious choice. In the notation χ(a; b) the set {a}
are the parameters and {b} the control variables appropriate to the discussion, and the term ‘relaxation rate’ is used in
the conventional shorthand notation to encompass both growth and decay of dynamic processes.
2 It would be hard to justify the recurrent flat compact form of D(�) and the simple temperature dependencies of
�1,2 found in the analyses of materials with widely different metallurgical properties for a random-defect model.
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2. Dynamical susceptibility and thermodynamic properties of non-Fermi liquids

2.1. Model analytical form of χ(q, ω)

As stated, in the non-Fermi-liquid regime we findD(�) to show a flat compact distribution with
bounding relaxation rates, �1 and �2. This form is motivated within a dynamical heterogeneity
model in the following section. It will be seen in section 3 that the constant amplitude of D(�),
representing the equal contribution of relaxation rates, �, in conjunction with χ(�) based on
the standard paramagnon expression, gives at the same time a straightforward interpretation
of the neutron spectra and also, in the appropriate limits, the characteristic non-Fermi-liquid
divergences in the temperature dependencies of thermodynamic quantities such as θ1, the NMR
lifetime, χ , and C/T .

For SED the spectrum of magnetic fluctuations of the diffusion rate �(q) is expressed by
the susceptibility:

χ(�; q, ω) = χ(q)�(q)

�(q) − iω
(2.1)

where � depends on microscopic variables which determine the characteristic energy scale
a� and wavevector Q� of the fluctuations. In particular, � is expected to soften in the
vicinity of the wavevector of incipient order, which itself may be temperature dependent.
Suppressing parameters, the relaxation rate may be written as �(q) = g(q)χ0(q)/χ(q) where
g(q) is a bare relaxation rate which is renormalized by the magnetic interactions through
χ . This follows the general philosophy of the Ginzburg–Landau treatment of classical phase
transitions, where one uses χ to express the influence of environmental factors (temperature,
pressure, etc) on the relaxation rate. Within a simple Fermi-liquid picture, the product
g(q)χ0(q) = u(q) is associated with microscopic quantities and unrenormalized by spin-
and momentum-conserving interactions; the empirical analysis of section 3 shows that this
stability may carry over into the non-Fermi-liquid state. Writing �(q) = u(q)χ−1(q), the
non-Fermi-liquid generalization of equation (2.1) is given following equation (1.1) as

χ(ω) =
∫

d� D(�)

[
u

� − iω

]
. (2.2)

On integration, one obtains, for each wavevector, the central model form for the dynamical
susceptibility:

χ(ω) = u

�2 − �1
ln

[
�2 − iω

�1 − iω

]
(2.3)

giving an absorptive part:

χ ′′ = u

�2 − �1

[
arctan

(
ω

�1

)
− arctan

(
ω

�2

)]
. (2.4)

The generic behaviour of χ ′′(ω) is given in figure 1(a) on linear scales and figure 1(b) with
logarithmic axes. From the functional form one sees that the lower bound, �1, acts as the ‘roll-
up’ energy of the response whilst the higher bound, �2, gives the ‘roll-off’ energy. The peak in
the response or mode frequency is at

√
(�1�2) which enables, for �2 not too far removed from

�1, an approximate description to be given in terms of SED (in the conventional paramagnon
form) with a relaxation rate �para = √

(�1�2). Examples of the characteristic temperature
dependence of the mode frequency, �para, as a function of temperature are given in figure 2
where, starting with the uppermost frames (figures 2(a1) and 2(a2)) the distribution D(�) has
been replaced by the simple paramagnetic Curie limit D(�) → δ(� − �0) with �0 ∼ kBT .
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Figure 1. (a) Generic behaviour of a model χ ′′(q, ω) function plotted with linear scales for the
non-Fermi liquid, �1 
 �2, up to the paramagnon limit, �1 = �2. In all curves the high-energy
tails are the same. The mode frequency of χ ′′(q, ω) is at

√
(�1�2) and can be thought of as the

typical energy scale of a fluctuation when �1 is not too far removed from �2. In the strongly
non-Fermi-liquid regime there is no typical fluctuation energy; the distribution across frequencies
is central to the non-Fermi-liquid response. In the simulations the parameter values for �1, �2 are:
25, 25 meV (paramagnon); 1, 25 meV; and 0.01, 25 meV represented by the solid line; line with
spaced points; and line with close points respectively. (b) Generic behaviour of a model χ ′′(q, ω)

function plotted with logarithmic scales. Curves of χ ′′(q, ω) with decreasing lower relaxation
rate, �1, illustrate the evolution from the paramagnetic limit to the strongly non-Fermi-liquid
state. The turning points, χ ′′(q, ω) = √

(�1�2), and high-frequency, χ ′′ = u/ω, low-frequency,
χ ′′ = uω/�1�2, and saturation, χ ′′ = πu/2�2, regimes are marked. The coding of the �1 values
is as in the upper frame.

The same limiting form of D(�), with the appropriate Curie–Weiss-type �(T ), has previ-
ously been applied successfully in the interpretation of the diffusive branch of Fermi-liquid
excitations in the paramagnetic phase of 3d transition metal compounds [14–16] and itinerant
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Figure 2. Examples of the relation between �1, �2 and the mode frequency �para = √
(�1�2). In

the top frames ((a1) and (a2)) the case of an uncorrelated paramagnet is given (Korringa relaxation).
In (b1) the upper bound of the distribution, �2, is taken to increase from a constant at low temperature
giving rise to characteristic

√
T dependence of the mode relaxation rate as found in some non-

magnetically ordering, heavy-fermion materials, a behaviour which has previously been derived
for the relaxation of a Kondo lattice [20]. At the lowest temperatures, if �1 saturates, the

√
T

rise is replaced by a constant value as in the single-ion Kondo model [12]. The overall low-
temperature behaviour is similar to that observed for UCu5 [22]. In frame (c1) the faster than
Korringa rates may reflect extra relaxation channels (e.g. phonon-assisted decorrelation in the
presence of magnetostrictive or spin–orbit coupling) or arise on account of local saturation of
the susceptibility. The soft lower limit, �1, indicates slow relaxation rates due to the build-up
of magnetic correlations at low temperature with, eventually, a merging of relaxation rates and
condensation towards a QCP.

antiferromagnets [17–19]. On entering the non-Fermi-liquid state, frames (b1), and (b2), the
degeneracy of the relaxation rates is lifted at low temperature. Given that the relaxation time
scales with the susceptibility, close to a QCP in q and T we anticipate �1 ∼ a1kB(T − T1)

where T1 ∼ 0 (solid line in frame (b1)). The upper limit, �2, reflecting the shorter lifetime of
heterogeneities with suppressed susceptibility, takes the form �2 ∼ a2kB(T − T2) + bq2

2 + · · ·
where T2 is negative and significant (compared with T ) and q2 is the distance in momentum
space from the soft wavevector, Q2 (which is not necessarily the same as that of �1). When
T1,2 � 0, as illustrated here (i.e. no ordering), and at temperatures such that T < |T1,2|,
the paramagnon approximation yields �para ∼ constant (finite intercept on the ordinate in
frame (b2)). At intermediate temperature where |T1| < T < |T2| the variation is ∼√

T ,



An analysis of the dynamical magnetic susceptibility in non-Fermi liquids R777

0

2

4

6

Γ(
q)

 (
m

eV
)

Q (rlu)

Γ
o

(a)

D(Γ)  (meV-1)

(Γ
2
-Γ

1
)-1

Γ
o Γ (meV)

D
o
(Γ)

0

2

4

6

Γ(
q)

 (
m

eV
)

Q (rlu)

Γ
o
(q)

(b)

D(Γ)  (meV-1)

(Γ
2
-Γ

1
)-1

Γ
o Γ (meV)

D
o
(Γ)

0

2

4

6

Γ(
q)

 (
m

eV
)

Q (rlu)Q
o

Γ
o
(q)

(c)

D(Γ)  (meV-1)

(Γ
2
-Γ

1
)-1

Γ
o Γ (meV)

D
o
(Γ)

Figure 3. Representations of the relaxation rates and distribution functions, D0(�), in type 1
non-Fermi liquids. Real-space averaging or reciprocal-space smearing generates an effective
distribution D(�). Spatial averaging is significant when the relaxation rate depends strongly
on inhomogeneities in the distribution of chemical or external fields. Smearing arises both from
dispersion and anisotropy in the relaxation rate and the explicit or implicit averaging taking place
in the experiment. For example in neutron scattering experiments it is the q-space resolution
employed; in NMR it arises from the local and incoherent nature of the probe. In (a) the illustrated
response is locally, in (b) ferromagnetically, and in (c) antiferromagnetically biased.

and at sufficiently high temperatures when �1 ∼ �2 ∼ T there is a return to SED and the
generalized Korringa form, � ∼ akBT . Similar temperature dependencies for �para have pre-
viously been derived in models of the Kondo state [12, 20] and observed in some non-ordering
heavy-fermion materials [21, 22] which, interestingly, over intermediate-temperature intervals
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Figure 4. Representations of the relaxation rates and distribution function, D(�), in type 2 non-
Fermi liquids. In (a) a local intrinsic distribution of relaxation rates is illustrated. In (b) there is one
soft relaxation wavevector, whilst in (c) the lower bound of all wavevectors is low. Such materials
would exhibit markedly different thermodynamic properties (C/T , χ , etc). The distributions may
depend on the composition and external environment.

exhibit an anomalous evolution of ρ(T ) [23]. In frame (c1), for a material driven from an
(antiferro-) magnetic ground state by doping, pressure, etc, the (wavevector dependent) sus-
ceptibility may be enhanced in the presence of residual magnetic correlations yielding, from
an initial Curie–Weiss form of �1 at high temperature, a suppression below the Korringa rate
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for3 T < TNéel host. The upper relaxation rate may keep the form illustrated in frame (b1) or, if
on approaching the lowest temperatures a QCP intervenes, it will fall concomitantly with �1.

2.2. Inferential models for D(�)

Expanding upon equation (1.1), the experimentally determined susceptibility is expressed as

χexpt(q, ω) =
〈
{χ(q, ω)}tprobe,vprobe

〉
Texpt,Vexpt

(2.5)

where 〈 〉Texpt,Vexpt
represents the incoherent sum over the experimental time and volume of

the set {χ(q, ω)} of susceptibilities determined over the probe coherence time and volume
(appendix 1). The respective restrictions of implicit ensemble and space-time averaging limit
details in the empirical information concerning D(�); however, to orient the discussion it is
nevertheless useful to invoke inferential, microscopic images for D(�).

First we distinguish type 1 and type 2 distributions. NER from type 1 distributions arises
from spatial, time-independent averages over the experimental volume of sharp distributions
D0(�) = δ(� − �0) with different values of �0. The sources of which may be extrinsic—for
example, gradients in temperature or applied pressure—or intrinsic entropy-driven chemical
disorder or microstructural defects. The fluctuations may be (a) local or correlated in
momentum space, (b) ferromagnetic, or (c) antiferromagnetic as sketched in figure 3.
In a similar manner, both implicit and explicit q-space averaging of a dispersive and/or
anisotropic response within Vexpt, as for example in NMR, heat capacity, or neutron scattering
characterizations, may yield non-Fermi-liquid like signatures via a type 1 distribution. In
general, both spatial inhomogeneity (i.e. sample contribution) and q-space averaging (i.e. probe
contribution) contribute to the final effective distribution D(�) in a given experiment.

In contrast, type 2 NER and hence non-Fermi-liquid behaviour arises from an intrinsic
distribution of relaxation rates, i.e. is independent of the above averaging. Wavevector
independent relaxation rates give a local non-Fermi-liquid (figure 4(a)); preferential mode
softening yields a non-Fermi liquid with spatial correlations (figures 4(b), 4(c)). Within given
limits of observation, fluctuations arising from a figure 4(b) distribution may be interpreted as
a quasi-q-independent (localized) high-frequency response together with a soft q-dependent
(correlated) response; an example may be Ce1−xLaxRu2Si2 [24]. The distribution of figure 4(c)
exhibits overall mode softening together with fluctuations focused at Q0, an example of which
is found in CeCu5.9Au0.1 [25]. Such materials are expected to exhibit markedly different
thermodynamic properties (evolution and values of C/T , χ , etc). Picking up the spatial
dependence we recall that the above considerations apply for each value of q and volume
of static inhomogeneity (on top of the dynamic heterogeneities), leading to possible type 1
averaging on top of the type 2 non-Fermi-liquid response.

Whilst at present no unambiguous experimental evidence in favour of a given microscopic
model for the non-Fermi-liquid phase exists4, and all empirical analyses devolve to equ-
ation (1.1), we stress an interpretation based on internal renormalization of the relaxation
3 Such low relaxation rates over extended regimes in temperature may be anticipated to favour the condensation of
novel condensed states.
4 The phenomenology of Varma et al [8] is based on a hypothetical form for χ(q, ω) in a homogeneous system
for which a novel (marginal Fermi-liquid) one-particle Green’s function is derived. The assumed homogeneity and
wavevector independence of excitations excludes derivation of χ(q, ω) via a distribution of response functions in
either real or momentum space. At this level the model suffers from unbounded high-energy excitations which lead
to formal divergences of, for example, the static susceptibility. Unfortunate confusion in physical reasoning may
arise through the use of similar functional forms for χ(q, ω) in the interpretation of a local response or to model
experimental data averaged in momentum space. The works of Hayden et al [9, 11] and Keimer et al [10] are for
distributions based on the wavevector averaged or local response of a Fermi-liquid like SED response as discussed in
section 3.3.
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rate of incoherent, spontaneous fluctuations (dynamical heterogeneities). This model has a
general motivation in an anharmonic (mode-coupled) system [4–7] and, since it preserves the
underlying form, yields a smooth crossover between the SED (Fermi-liquid) and NER (non-
Fermi-liquid) response. To introduce the dynamic model it is considered frozen at one instant,
and a convenient starting point is to rewrite equation (2.5) in terms of its Fourier transform as
the instantaneous magnetization-density correlation function:

CTexpt,Vexpt =
〈{

1

vprobe

∫ vprobe/2

−vprobe/2
dr ′ m(r ′, t)m(r + r ′, t)

}〉
. (2.6)

Mathematically the integral in equation (2.6) may be broken down as a sum of integrals over
intervals vi lying within a given vprobe (cf. figure A2 given in the temporal domain):

C(r) =
∑
i

gii(vi; r) +
1

2

∑
i,j

gij (vi; r) (2.7)

where, for vi < vprobe (see appendix 1),

gij (vi; r) = 1

vi

∫ vi/2

−vi/2
dr ′ mi(r

′)mj (r + r ′). (2.8)

In the case where over all intervals, vi , the magnetization-density correlations are characterized
by the same relaxation rate, �, nothing is changed and SED is recovered. In modelling the
non-Fermi-liquid state, the (physical) generalization that we have in mind is as follows: whilst
for a given vi the response can be characterized by the relaxation rate �i , an adjacent fluctuation
may have a different characteristic relaxation rate�j . Taking into account the dynamical nature
of the problem demands a parallel consideration in the temporal domain; this and the role of
dynamic phase coherence are discussed in appendix 1.

Within this framework a power-law (scale-free) distribution of fluctuating volumes, for
both SED and non-Fermi-liquid states, follows on the assumption of incoherence which enables
the total energy of fluctuating volumes vi to be expressed in terms of their degeneracy, ni ,
as ET

vi
= niviEvi . Under set external conditions, given that the energy density, Evi , is

constant, i.e. the thermodynamic condition that ET
vi

is an extensive quantity [4–7, 26], a set
of unconstrained, incoherent fluctuations then have equal probabilities. Equating this with
their volume representation, nivi/Vexpt, yields nivi = constant. In the non-Fermi-liquid
phase, given an identification of the local renormalization of �i (i.e. χi) with volume vi , the
normalized contribution of modes in the interval d� about �i is proportional to their volume
representation, D(�) d� ↔ nivi/Vexpt, yielding a flat compact distribution for D(�).

The distinction between SED and non-Fermi-liquid states thus lies in the distribution
of relaxation rates present in the latter. The low-temperature coherent Fermi-liquid state,
characteristic of strongly correlated electronic systems, may then be seen in primitive analogy
with the different microscopic states realized at discontinuous and continuous transitions of
phase. At a discontinuous transition, finite correlation lengths permit the coexistence of
multiple phases; in contrast, the diverging length scale of fluctuations forces the system to
be in a unique critical state on approach to a continuous phase transition. The divergence of
scale, spatial or temporal, is equivalent to the removal of competing phases. In the passage
to a QCP the divergence of (vi, τi) accompanies the condensation of a unique relaxation rate
out of the non-Fermi-liquid distribution. Thus, whilst the non-Fermi liquid holds the middle
ground, SED may be anticipated at both extremes of temperature—that is, both at the very
lowest, when the system has selected and condenses in a continuous fashion into one of the
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competing ground states5, and at sufficiently high temperatures, where correlations fall away
and the system behaves as a simple paramagnet6 (cf. figure 2(c)).

2.3. Non-Fermi-liquid parameter

Since the variable T employed in figure 2 can in general be replaced by any convenient tuning
parameter, e.g. composition, pressure, or magnetic field, it may be of use in constructing phase
diagrams and the selection of materials to have some index of the non-Fermi-liquid state. A
suggestive measure is given by the ratio of the width of the distribution D(�) to the mode
frequency of χ ′′(ω); i.e. define a parameter:

NFL = (�2 − �1)/
√
�1�2. (2.9)

This ratio, which goes to zero as �1 and �2 tend to a common relaxation rate and diverges as
the distribution becomes large, is plotted in figure 5 for the typical cases considered in figure 2.
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Figure 5. The thermal evolution of the non-Fermi-
liquid parameter, equation (2.9), is given for cases
(a) to (c) of figure 2.

2.4. Scaling of the dynamical susceptibility with E/kBT

A generalized scaling of the dynamical susceptibility, χ ′′ ∝ T −αg(ω/kBT ), which retains T as
an explicit parameter has been proposed with, however, very different scaling laws and values
of the exponentα invoked to characterize different materials around the antiferromagnetic QCP
[9, 13, 25]. The interest lies in going beyond the standard model, which scales in the Curie
regime with α = 1 in the vicinity of the critical point, and relaxing α to find scaling laws which
may yield significant restrictions on proposed theoretical models of the fluctuation spectrum
[6, 27]. The freedom given to α (which governs the energy or, equivalently, timescale) is
reminiscent of the introduction of an anomalous exponent in the spatial scaling of static critical
phenomena at a continuous phase transition. At the critical point the domination of physical
properties by fluctuations over a wide distribution of length scales brings in a new spatial
parameter (the lower cut-off ∼ lattice parameter) in addition to the correlation length (upper
cut-off ). From the perspective of the dynamical heterogeneity model, a correspondence may

5 With the proviso that the trajectory to this state is not blocked by a transition to a non-Fermi-liquid phase, e.g. a
superconducting ground state.
6 With the proviso that this trajectory is not cut short by a change of state, e.g. structural transformation, melting.
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be made with the introduction of a broad, bounded distribution of relaxation rates and the
anomalous values assumed by α [7].

To motivate the analysis of χ ′′(ω) using scaling plots, we follow the behaviour of the high-
and low-frequency asymptotes of the dynamical susceptibility. The high-energy asymptote of
equation (2.4) is

lim
ω→∞

[
ln(χ ′′)

] = − ln(ω) + ln(u) (2.10)

i.e. a measure of the bare relaxation rate unrenormalized by local non-Fermi-liquid interactions
expressing the physical result that on a sufficiently short timescale the response is not modified
by its environment; this asymptote then becomes essentially temperature independent. The
low-frequency asymptote

lim
ω→0

[
ln(χ ′′)

] = ln(ω) + ln(u) − ln(�1�2) (2.11)

exhibits the full weight of non-Fermi-liquid renormalization with an implicit temperature
dependence through both �1 and �2. For the scaled variable, ω/kBT , the asymptotes behave
as follows:

lim
ω→∞

[
ln(χ ′′{kBT }α)] = − ln(ω/kBT ) + ln(u) + (α − 1) ln(kBT ) (2.12)

and

lim
ω→0

[
ln(χ ′′{kBT }α)] = ln(ω/kBT ) + ln(u) + (α + 1) ln(kBT ) − ln(�1�2) (2.13)

giving, for a scaling exponent α close to unity, a temperature-independent behaviour for data
lying in the high-frequency (ideal-gas, Curie) limit with a scaling function of asymptotic form:
limω→∞ g(ω/kBT ) = (ω/kBT )−1. Data obtained in the low-frequency limit have an effective
scaling exponent which depends critically on the temperature dependence of the relaxation
rates �1,2, maintaining its temperature independence for

α = ln(�1�2)

ln(kBT )
− 1 (2.14)

with the scaling function limω→0 g(ω/kBT ) = (ω/kBT ).
To initiate the discussion we consider the approximate scaling which obtains in the

paramagnetic, � ∼ √
(�1�2), Curie–Weiss limit with u ≈ constant: � ≈ akB(T − T0).

Temperature independence is maintained for the upper asymptote with α close to unity, whilst
the low-frequency limit requires

α = 2
ln(akB(T − T0))

ln(kBT )
− 1. (2.15)

In the Korringa regime, where a ≈ 1 and T0 = 0, exact scaling obtains for both high- and
low-frequency limits with exponent α = 1. Maintaining the condition a ≈ 1 and varying T0

enables one to explore the Curie–Weiss regime where approximate scaling occurs for α < 1
with T0 < 0, i.e. no spontaneous magnetic order, and for α > 1 when T0 > 0 in the presence of
a finite-temperature phase transition. The three cases are illustrated for the dynamical response
at 300 K and 120 K with values of a = 0.97, T0 = 0 and ±46 K (4 meV) in figure 6.

Beyond the paramagnetic approximation, to satisfy the high-frequency asymptote the
scaling exponent should remain close to unity; and, for materials selected by reason of doping,
applied pressure, etc as being subcritical, i.e. showing no finite-temperature transition, on
the basis of the above considerations, we may anticipate sublinear scaling. The recurrent
observation of α < 1 [13, 25] is reinforced in the light of the habitual (low-temperature)
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behaviour of the relaxation rates illustrated in figure 2(b1), �1 ≈ a1kB(T − T1) and �2 ≈
constant, which suggest a value for α compatible with the low-frequency asymptote as follows:

α = ln(a1�2)

ln(kBT )
+

ln(kB(T − T1)

ln(kBT )
− 1. (2.16)

As tuning of composition and the environment causes T1/T → 0, i.e., at low temperature, �1

becomes critical, this imposes the condition

[kBT ]α = constant (2.17)

giving temperature independence as α → 0. To optimize the empirical scaling in a given
system, the compromise between the low- and high-frequency requirements of the exponent,
0 � α � 1, will depend on the extent and temperature range of the data treated. At a practical
level, data sets are rarely sufficiently extensive in frequency to reach both asymptotes and an
approximate criterion for the required value of the anomalous exponent to make a compact
representation of the data is that χ ′′(ω)[kBT ]α in the (measured) high-frequency limit at high
temperature should overlap with χ ′′(ω)[kBT ]α in the (measured) low-frequency limit at low
temperatures:

χ ′′(ωhigh)[kBThigh]α ≈ χ ′′(ωlow)[kBTlow]α. (2.18)

These alternative, heuristic, derivations of the scaling exponent which are exploited further
in section 3 in no way diminish the usefulness of the concept over given temperature and
frequency ranges; however, they do underline the fact that empirical scaling laws and exponents
may depend on both the temperature and the part (high or low frequency with respect to√
(�1�2)) and the proportion of the spectrum measured, i.e. the experimental dynamic range.

2.5. Implications for bulk properties

2.5.1. χ(T ). From equation (2.3) the real part of the susceptibility is given as

χ ′(q, ω) = u

2 (�2 − �1)
ln

[
ω2 + �2

2

ω2 + �2
1

]
(2.19)

giving for the bulk, q = 0, mode, at sufficiently low frequencies,

χ ′ = u

(�2 − �1)
ln

[
�2

�1

]
(2.20a)

which, since measurement ofχ has no intrinsic energy resolution, may more aptly be expressed
in terms of the local renormalized susceptibilities:

χ ′ = 1(
χ−1

2 − χ−1
1

) ln

[
χ−1

2

χ−1
1

]
. (2.20b)

For the approximate forms �1 = a1kB(T − T1) and �2 = a2kB(T − T2), the characteristic
non-Fermi-liquid logarithmic divergence occurs in the low-temperature limit, (�2 − �1) ∼
constant, �2 ∼ constant, and �1 ∼ T :

χ ′ = a − b ln [T ] (2.21)

whilst χ ′ saturates for conditions of composition, pressure, field, etc where at sufficiently low
temperature �1 ∼ constant and �2 ∼ constant. Finally, in the presence of a zero-temperature
phase transition, either

χ ′ → A

(a2 − a1)T
(2.22)

or, in the case where �1 ≈ �2, a return to Fermi-liquid behaviour occurs (equation (2.1)).
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Figure 6. In parts (a) to (c) the linear, sublinear, and hyperlinear scaling plots obtained for the
general paramagnetic approximation, � ∼ √

(�1�2), discussed in section 2.4 are shown. The
left/right-hand frames have χ ′′kBT and χ ′′kBT

α as ordinate respectively. (a) The solid/dotted
curve is drawn for

√
(�1�2) = 25 meV (�1 = 24.75 meV, �2 = 25.25 meV) at 300 K and for√

(�1�2) = 10 meV (�1 = 9.75 meV, �2 = 10.25 meV) at 120 K with a scaling exponent α = 1.
(b) The solid/dotted curve is drawn for

√
(�1�2) = 29 meV (�1 = 28.75 meV, �2 = 29.25 meV)

at 300 K and
√
(�1�2) = 14 meV (�1 = 13.75 meV, �2 = 14.25 meV) at 120 K with a scaling

exponent α = 0.8. (c) The solid/dotted curve is drawn for
√
(�1�2) = 21 meV (�1 = 20.75 meV,

�2 = 21.25 meV) at 300 K and
√
(�1�2) = 6 meV (�1 = 5.75 meV, �2 = 6.25 meV) at 120 K

with a scaling exponent α = 1.35.

2.5.2. NMR. Assuming temperature-independent coupling constants, the inverse of the spin–
lattice relaxation time, θ1, is proportional to the low-frequency limit of T

∑
q χ ′′(q, ω)/ω.



An analysis of the dynamical magnetic susceptibility in non-Fermi liquids R785

Accounting for the local nature of the probe is straightforward for q-independent modes or
when the relaxation time is strongly peaked around a critical wavevector, giving

1

*1
≈ T

(
u

�1�2

)
. (2.23)

In instances where the fluctuations relaxing the nuclear polarization are dominantly 2d, the
sum over q is essentially the same as that used in deriving the (2d) correlation function (section
A2.2 of appendix 2), giving

1

*1
≈ T

πχ

λ2

(
�2 − �1

�1�2

)
(2.24)

for an in-plane magnetic correlation length λ. In the limit �2 � �1 (i.e. λ2Q2
max � 1) this

gives

1

*1
≈ T

πχ

λ2�1
. (2.25)

Thus, for compositions where�1 maintains its characteristic form and�2 is large and essentially
temperature independent, one obtains for fluctuations that are (i) strongly peaked around a
critical wavevector, (ii) focused in a plane with quadratic dispersion, or (iii) have wavevector
independent relaxation rates,

1

*1
≈ T

(
1

T − T1

)
. (2.26)

This yields, in the vicinity of the QCP composition where T1 ∼ 0 K, an inverse spin–
lattice relaxation time independent of temperature; on passing towards a magnetically ordered
composition, T1 becomes positive, and a characteristic divergence in θ−1

1 is observed on cooling
from above the critical point. Doping on the other side of the QCP sends T1 negative and θ−1

1
initially grows and then saturates with increasing T .

2.5.3. Entropy and low-temperature heat capacity. For a non-Fermi liquid modelled on the
existence of a distribution of independent relaxational modes, the entropy may be developed
as a sum over the contributions of a set of overdamped oscillators [7, 26, 28–30]. This allows
an estimate to be made of the contribution of such modes to thermodynamic properties, in
particular the low-temperature heat capacity [28, 29]:

lim
T→0

C

T
= υπk2

B

3

∑
modes

1

�
(2.27)

where υ is the polarization index. Considering the non-Fermi-liquid state, the sum over the
primary (magnetic) relaxational modes may be given as

lim
T→0

C

T
= υπk2

B

3

∑
q

∫
d�

D(�)

�
(2.28)

which, after integration over D(�), gives

lim
T→0

C

T
= υπk2

B

3

∑
q

1

�2 − �1
ln

[
�2

�1

]
. (2.29)

For wavevector independent relaxation rates, �, measured in meV, and with η expressing the
number of effective (magnetic) degrees of freedom per atom per polarization, summing the
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three degenerate polarizations over the Brillouin-zone volume, (2π)3/(unit-cell volume), in
the paramagnetic state,

lim
T→0

C

T
= η

2.25

�2 − �1
ln

[
�2

�1

]
J mol−1 K−2 (2.30)

(section A1.6 of appendix 1). For comparison, the corresponding result for local SED is

lim
T→0

C

T
= η

2.25

�0
J mol−1 K−2 (2.31a)

and for dispersive SED of the (homogeneous) Fermi liquid with a linear relaxation rate,

lim
T→0

C

T
= η

3.38

�upper
J mol−1 K−2 (2.31b)

where �upper = γ qzone bdyχ
−1
FL . Giving the relative non-Fermi-liquid enhancements as

C

T

∣∣∣∣
NFL

= C

T

∣∣∣∣
localSED

�0

�2 − �1
ln

[
�2

�1

]
(2.32a)

and

C

T

∣∣∣∣
NFL

= C

T

∣∣∣∣
FL

2

3

�upper

�2 − �1
ln

[
�2

�1

]
(2.32b)

respectively. In the presence of dispersion, on defining a zone averaged relaxation rate, �̃, an
approximate non-Fermi-liquid form may be derived7:

lim
T→0

C

T
= η̃

2.25

�̃2 − �̃1

ln

[
�̃2

�̃1

]
J mol−1 K−2 (2.33)

where the coefficient η̃ expresses the effective fraction of modes per atom per polarization
contributing to the integral, taking into account their distribution in reciprocal space. Assuming
similar functional forms at finite temperature, the ratio C/T is dominated by the low-
temperature behaviour of the relaxation rates. In the presence of dispersion, for distributions
of the type shown in figure 2(c), the low-temperature behaviour of C/T is dictated by the
approximately wavevector independent �1(T ) and will be given by �̃1(T ) ∼ �1(T ) up to
temperatures kBT ∼ �2(Q0). In contrast, for a distribution of relaxation rates such as that
in figure 2(b), the �̃1(T ) ∼ �1(T ) approximation will hold good only over a more restricted
temperature zone. In general, the characteristic non-Fermi-liquid logarithmic divergence is
recovered when (�2 − �1) ∼ constant, �2 ∼ constant, and �1 ∼ T :

C

T
= a − b ln [T ]. (2.34)

C/T saturates for conditions of composition, pressure, field, etc, where at sufficiently low
temperature �1 ∼ constant and �2 ∼ constant, and in the case where �1 ≈ �2 a return
to Fermi-liquid behaviour occurs. Parenthetically, it is noted that, in the framework of a
dynamical heterogeneity model where renormalization of the primary (magnetic) degrees of
freedom occurs within fluctuations of a secondary field, C/T may have non-trivial corrections.

7 The dependence on temperature of �̃ may not precisely follow that of �.
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3. Illustration of the distributed-relaxation ansatz by example

The consequences of equation (1.1) are illustrated through analysis of inelastic neutron
scattering and thermodynamic data. As a primary vehicle for this purpose we select the
compound UCu4Pd which, as will be seen, exhibits the simplest, local, type 2 response
(figure 4(a)) and for which extensive inelastic neutron scattering and thermodynamic data
sets are available [13, 31–35]. Comparisons are then drawn within the available literature for
the non-Fermi-liquid compounds CeCu5.9Au0.1, representative of a mode-selected type 2 non-
Fermi-liquid (figure 4(c)), and La1.95Ba0.05CuO4, for which the available neutron data may
be understood in terms of a wavevector averaged type 1 response (figure 3(c)). From these
examples it will already be seen that, in contrast to the rather general forms in the thermal
evolution of thermodynamic quantities, a broad range of qualitatively different spectral line
shapes of the inelastic neutron scattering response have been reported as being characteristic
of the non-Fermi-liquid phase.

Concerning the analysis of the neutron scattering spectra, we note the highly demanding
nature of the experiments, either (a) because the temperature is low compared to the energy of
excitation (Bose factor small for quantum fluctuations), (b) since the system is a long way from
criticality (in composition, pressure, or wavevector) and the susceptibility is therefore small, or
(c) because the frequency spectrum of the fluctuations demands high energy resolution which
implies a reduced neutron flux. These factors have conspired in leading to the use of loose
collimation and focusing optics to obtain a measurable signal; i.e. in the general use of poor
q-resolution to maintain resolution in frequency (of interest in E/kBT scaling). Thus in the
analysis there are two issues. First an experimental question: that of the role of resolution
and probe coherence in (q, ω) space. How much averaging has been carried out to obtain the
spectrum and has it been adequately accounted for? The second is to model the distribution of
relaxation times. Finally, having made the analysis, if the existence of an intrinsic distribution
of relaxation rates is established, one may enquire as to its microscopic origin.

3.1. Analysis of UCu4Pd

3.1.1. Inelastic neutron scattering spectra. In this intermetallic compound, based on the
parent material, UCu5, which is a Kondo-lattice antiferromagnet with a Néel transition at
16.5 K, substitution with palladium brings about a suppression of the antiferromagnetic state.
The analysis of thermodynamic and transport properties has established non-Fermi-liquid
behaviour and suggests the presence of a quantum critical state in the vicinity of x = 1 for
UCu5−xPdx at low temperatures. The x = 1 composition has been selected on account of its
stoichiometry; in addition, given the claim that even going to x = 1.5 does not qualitatively
alter the form of the neutron spectra, the role of structural heterogeneity may not be decisive
[13, 35]. The inelastic neutron data [13] have the following characteristics. First, beyond a
gentle fall, which appears to be well accounted for by the uranium form factor, the spectra
of χ ′′(q, ω) are independent of q. Second, the low-energy position of the maximum in the
line shape is incompatible, within the standard single-pole model of SED, equation (2.1),
with the intensity distribution at higher energies. The frequency dependence is considered
in [13, 31, 32] as having three qualitatively different regimes. The first distinction is for
frequencies above or below ω∗ = 25 meV; then, depending upon the temperature, for ω < ω∗,
one has frequencies much less than or far above kBT . The focus of interest in the original work
is given to truncated data sets satisfying ω < ω∗, i.e. ignoring the high frequencies, where the
authors find an approximate scaling behaviour:

χ ′′(ω, T )T 1/3 ≈ (T /ω)1/3Z(ω/T ). (3.1)
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Figure 7. The dynamic susceptibility as measured in UCu4Pd by means of inelastic neutron
scattering [13] versus energy transfer for temperatures from 12 K to 300 K. The solid lines are fits
to equation (2.4). In this figure the relative changes in amplitude and form over the full spectral
range and for all given temperatures are represented by keeping �2 constant and giving �1 a linear
temperature dependence, equation (3.2), as for the solid lines of figure 8.

Within the framework of the model susceptibility, equation (2.4), we find that all of the data
given, i.e. over the full range of measured frequencies both above and below ω∗ and at all
temperatures, can be represented as shown by the solid lines in figure 7. The data have been
analysed using equation (2.4) with u determined by the asymptotic slope at high frequencies
(section A3.1 of appendix 3). Above 20 K one has the following simple parametrization of
the fitted parameters8 (±10%):

�1 = 0.74kB(T − 1.2) meV

�2 = 18 meV
A = 0.07/(�2 − �1) emu mol−1.

(3.2)

The simplicity of the parametrization of the response is remarkable. The scaling of A as the
inverse of the difference of the relaxation rates reflects an approximate conservation of the
area of the flat compact distribution over a significant temperature interval. This approximate
conservation may be interpreted in an itinerant model, section 2.1, to reflect a local Fermi-liquid
like (i.e. T 
 TFermi) response. The temperature dependence of �1, �2 is given in figure 8. As
shown in the main figure, the estimated lower bound �1 at 12 K becomes very small, which
may indicate that, despite the suppression of the phase transition to T = 0 K, the dynamical
response of the doped material ‘remembers’ the critical point of its host UCu5 (TNéel ∼ 16 K).
As increasing thermal energy overwhelms residual magnetic correlations, one anticipates a
return to Korringa like behaviour as in figure 2(b1). This is marked by the convergence of �1

8 This simplified parametrization for �1 is not reliable much below 20 K since the value at 12 K is small and poorly
defined (data do not extend low enough in energy; see figure A3, later). More details of the low-temperature values
may be extracted from bulk measurements (section 3.1.3, section 3.1.4).
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Figure 8. The dynamic susceptibility in UCu4Pd has been fitted to equation (2.4) with u

determined by the asymptotic slope at high frequencies, equation (A3.1), and may be represented
as u(T ) = u(1 − (T /TF)

2) with u = 0.067 ± 0.001 meV emu (mol U)−1 and TF = 700 ± 20 K.
The inset gives the non-Fermi-liquid parameter deduced from inelastic neutron scattering data as
a function of sample temperature for UCu4Pd. The rise with falling temperature is indicative of a
crossover from Fermi-liquid like behaviour at room temperature to non-Fermi-liquid tendencies.

and �2 around 300 K; i.e. the bounds of D(�) merge and the flat compact distribution reduces
towards a Dirac function. The thermal evolution of the non-Fermi-liquid parameter is given
in the inset to figure 8, where it shows a characteristic divergence towards low temperature.

Concerning the magnitudes of the bounding relaxation rates, we note that in the standard
model of local SED where the q-dependence of χ may be ignored, the most probable9 mode
satisfies an equation of the form

� = uC−1kB(T − T1) (3.3)

with a Curie constant

C = Np2µ2
B

3V
where u is a measure of the inverse transit time of the fermion quasiparticles taking part in the
spin relaxation. This may be estimated as γQ where γ has the nature of a typical transport
velocity and Q is a measure of the inverse relaxation distance. Assembling the constants one
obtains

� = 5.6 × 103 γQ

np2
kB(T − T1) (3.4)

9 The most probable mode is not necessarily that observed; it depends upon the space-time scale of the experimental
technique (e.g. x-ray, neutron, and thermodynamic probes may give very different results). However, in the regime
of SED, i.e. away from critical or non-Fermi-liquid behaviour, the most probable is, in general, the most correlated
mode of longest lifetime.
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where γQ and kBT are in meV, n is the magnetic particle density in units of 1022 cm−3, and
p is the effective number of Bohr magnetons. Identifying the most probable mode with the
mode of longest lifetime, in the presence of residual antiferromagnetic correlations, Q ∼ (U–
U distance)−1, γ ∼ (1–2) × 10−3 meV Å (taken from previous analyses of paramagnetic
materials [14, 15]), n ∼ 1–3, and we find p ∼ 3.3–1.7 in reasonable agreement with the
measured moment. Some justification may come, as discussed in section A1.3 of appendix 1,
from the perspective that the lowest relaxation rate may exhibit the strongest influence of
residual antiferromagnetic correlations. Given the polycrystalline nature of the sample, one
may question the role of an intrinsic anisotropy of χ(q, ω) as the origin of the distribution
of relaxation rates. Little can be said save that analysis of the bulk susceptibility in section
3.1.3, over a similar temperature interval, confirms the bounding temperature dependencies of
the relaxation rates and the form of D(�) as estimated from inelastic neutron scattering data.
Since anisotropy is expected to become progressively more important with decreasing |q|, this
makes it unlikely that it plays a major role.

3.1.2. Scaling of χ ′′(q, ω) with E/kBT . For UCu4Pd, scaling of χ ′′ with ω/kBT has
been proposed with the scaling exponent α ∼ 1/3 for data sets with energy transfers below
ω∗ = 25 meV [13]. Since the given analysis fits well to the whole data set at all measured
energy transfers and all temperatures (figure 7), it is clear that within these bounds the
analytical form, equation (2.4), will obey the chosen scaling relationship. Inspection of
the fitted parameters, equation (3.2), indicates that the decision to treat ω < ω∗ in [13]
neglects all data above �2, i.e. ignores the α → 1 high-frequency asymptote anticipated
from equation (2.4). In figure 9(a) a scaling plot of all the data for UCu4Pd with α = 1
is presented; the high-frequency data show good agreement with both the predicted scaling
exponent and functional form, g(ω/kBT ) → (ω/kBT )−1. The low-frequency condition of
equation (2.4), [kBT ]1+α/�1�2 = constant, may be approximately satisfied at any temperature
when �1 ≈ kBT and �2 ≈ constant for α = 0, as shown in figure 9(b), or more generally
solved graphically (in the vicinity of a given temperature) using the parametric values of �1,2

to estimate the effective exponent as illustrated in figure 10. In figure 10 the scaling exponent
taken over the range 0 < α < 1 (together with the value of the scaling constant c) required
for approximate low-frequency scaling is given; optimum scaling occurs for low values of
α. Since this semi-analytical method does not take into account the actual dynamic range
of available data, the alternative empirical scaling criterion, equation (2.18), may in practice
be more relevant. Application to data sets at the lowest and highest temperatures yields an
effective exponent α ≈ 0.7 as illustrated in the figure 9(c). Finally, by way of example for
three temperatures, 12 K, 100 K, and 300 K, in figure 9(d) the solid line illustrates the level of
agreement attained on taking the functional scaling form previously proposed for CeCu5.9Au0.1

with the exponent α = 0.75 [25].

3.1.3. χ (T) in UCu4Pd. The measured bulk susceptibility in UCu4Pd [33] is given in figure 11
as squares together with the response calculated with parameters from the neutron data analysis
(dashed line) using equation (2.20):

χ ′ = u/(kBa)

T2 − T1 − T
ln

[
T2

T + T1

]
. (3.5)

In the absence of a remarkable balancing of changes in spectral weight across the zone,
the excellent agreement in the temperature dependence strongly supports the wavevector
independent parametric form derived from the inelastic scattering. Extending the analysis
to lower temperatures, the same functional form yields the solid line. Since no energies are
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Figure 9. Going from double-logarithmic plots for UCu4Pd, figure 7, to scaling plots. In frame
(a) all data are replotted with E/kBT as abscissa and χ ′′kBT as ordinate. It is evident that no
scaling like plot exists except for data taken in the high-frequency limit where the response is
unrenormalized. In frame (b) an approximate scaling for data taken in the low-frequency limit is
obtained for α = 0 (see also figure 10). In frame (c), using the criterion given in equation (2.18),
which yields α ∼ 0.7, an approximate scaling curve may be constructed. In frame (d), data at
12 K, 100 K, and 300 K for UCu4Pd are plotted following the scaling relation suggested in [25].
The solid line follows equation (4) of [25]. In this form, a closer agreement with the data can be
obtained since the abscissa scaling has been relaxed to E/(akBT ).
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Figure 11. The measured bulk susceptibility in UCu4Pd [33] (squares) and the response
calculated from the neutron data (dashed line) using equation (3.5). The solid line is a fit
to the same form. Since no energies are resolved in this technique, only the Curie ratio
u/(kBa) may be determined. The parameter values, with the estimates from inelastic neutron
scattering above 12 K given in square brackets, are: u/(kBa) = (840 ± 70) × 10−3 emu mol−1

[(1040 ± 100) × 10−3 emu mol−1]; T1 = −0.7 ± 0.2 K [1.2 ± 0.3 K]; T2 = 255 ± 40 K
[280 ± 30 K]. On taking a1 = 0.74 (neutron value, equation (3.2)), estimates for relaxation
rates may be given as �1 = 0.74kB(T − 0.7 ± 0.2 K) meV and �2 = 16.3 ± 2.5 meV.

resolved in this technique, only the Curie ratio u/(kBa) may be determined; the parameter
values are given in equation (3.6) with estimates from inelastic neutron scattering above 12 K
given in square brackets:

u/(kBa) = (840 ± 70) × 10−3 emu mol−1 [(1040 ± 100) × 10−3 emu mol−1]

T1 = −0.7 ± 0.2 K [1.2 ± 0.3 K] (3.6)

T2 = 255 ± 40 K [280 ± 30 K].
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On taking a1 = 0.74 (neutron value, equation (3.2)), estimates for relaxation rates may be given
as �1 = 0.74kB(T − 0.7 ± 0.2 K) meV and �2 = 16.3 ± 2.5 meV. There are no significant
discrepancies in the parameters, given that T1 is determined to much lower temperatures in the
bulk measurements and, as was pointed out, is in any case poorly defined in the neutron data.

3.1.4. C/T in UCu4Pd and NMR in UCu3.5Pd1.5. In figure 12 we plot C/T for UCu4Pd
[34] both in zero external field and under 6 T, as circles and triangles respectively. In the
absence of evidence for strong anisotropy or dispersion, equation (2.30) is employed with the
same functional form for D(�) and bounding relaxation rates as were used in the analysis of
the neutron spectra and the bulk susceptibility. For B = 0 T and 0.15 < T < 3 K the solid
lines in figure 12 show the results of analysis with �1 = a1kB(T − 0.005 ± 0.006 K) meV,
�2 = 1.1 ± 0.05 meV, and η = 0.060 ± 0.003 given a1 = 0.74 (neutron scattering value).
The small value of η reflects a quenching of magnetic relaxational degrees of freedom over
the measured temperature interval. One possibility is to equate this with a reduced number
of magnetic ions, i.e. roughly 6% of the uranium ions are excited in (magnetic) relaxational
processes on the space-time scale of the experiment. The implied (dynamic) heterogeneity
of relaxation sites might then be interpreted as arising from an incomplete (i.e. exhaustion of
Kondo) screening [12, 13, 33]. On the other hand, the coincidence of the ∼15-fold reduction
in both the upper bound, �2, and η strongly suggests that, at low temperature, the progressive
renormalization of D(�) seen below 300 K is compounded with a loss of spectral weight
in relaxation modes of characteristic frequency above ∼kBTNéel/h̄. Such modes, which see
very weak renormalization, are neglected in the calculation of C/T . Further low-temperature
quenching of modes is evidenced by the flattening of C/T below ∼0.15 K.

Under an applied field of 6 T there is a marked reduction of the heat capacity below ∼1.5 K.
Since the field suppression of (antiferromagnetic) fluctuations is expected to be most marked for
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Figure 12. The linear coefficient of the heat capacity at low temperature in UCu4Pd versus
T ; circles and triangles are for B = 0 and B = 6 T respectively [34]. The solid line is
a fit to the functional form of equation (2.30) for B = 0 T and 0.15 < T < 3 K with
�1 = a1kB(T − 0.005 ± 0.006 K) meV, �2 = 1.1 ± 0.05 meV, and η = 0.060 ± 0.003
given a1 = 0.74 (neutron scattering value). The small value of η reflects an effective quenching
of magnetic relaxational degrees of freedom. For B = 6 T, �2 is kept fixed, giving: �1 =
a1kB(T + 2.8 ± 0.1 K) meV and η = 0.084 ± 0.001. See section 3.1.4 for a discussion.
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the low-energy modes, �2 is kept fixed in the analysis, giving: �1 = a1kB(T +2.8±0.1 K) meV
and η = 0.084 ± 0.001. The key change lies in the reduced bandwidth of the relaxation rates,
i.e. the return towards a Fermi-liquid like response, as reflected in the fall of the Curie–
Weiss temperature from ∼0 K to ∼−3 K. In this context we recall the nuclear spin-resonance
results (under an applied field of 5 T) for UCu3.5Pd1.5 [35] which, together with the dynamical
susceptibility (B = 0 T), fail to find an explanation within the Kondo-disorder distributed-
temperature model [12–13, 31–35] and for which the main conclusions are: (i) that the NMR
data under applied field may be most efficiently represented by a single effective relaxation
time; and (ii) that there is an initial linear temperature dependence of θ−1

1 (T ), figure 4 [35],
for 0.1 K < T < 3 K. Both results may be understood in the light of the analysis of C/T

data under a 6 T applied field from which the following can be inferred; (i) the collapse of
the distribution D(�); and (ii) a break point from linear to sublinear temperature dependence
of θ−1

1 (T ) at T1 = 2.8 K for �2 ∼ constant (equation (2.26)). The agreement between NMR
and C/T analyses demonstrates an insensitivity of the global non-Fermi-liquid behaviour in
UCu5−xPdx to exact composition and accompanying defect structure, suggesting an intrinsic
mechanism in agreement with conclusions drawn from inelastic neutron scattering experiments
on both UCu4Pd and UCu3.5Pd1.5 [13, 31, 32].

3.1.5. Summary of results on UCu4Pd. To conclude this section, we summarize our findings
on UCu4Pd where the unusual frequency dependence of the inelastic neutron scattering data
appears to reflect type 2 behaviour. The thermal evolution of the parameters �1 and �2 implies,
first, that above the characteristic temperature ∼300 K, this system should behave as a simple
paramagnetic relaxor, �1 ∼ �2 = �. Exploiting the q-independence of the data, an estimate
of �1 can be made which appears to be in accord with the experimental value and suggests
that, whilst long-range (phase) correlations have been lost, a residue of the antiferromagnetism
remains in the local, low-frequency dynamics on approaching the quantum critical composition.
Since UCu4Pd has no transition at low temperatures, �1 is assumed to retain a finite value.
Whilst this is consistent with analysis of thermodynamic properties, unfortunate problems of
experimental resolution hinder direct evaluation using the neutron scattering data (the limited
low-energy data at 12 K give�1 ∼ 0.03±0.1 meV on direct application of equation (2.4); using
the saturation value, equation (A3.7), and estimating the position of

√
(�1�2) graphically yields

0.1±0.1 meV). The constancy ofu: (i) strongly suggests that the distribution of relaxation rates
is unlikely to involve a mixture of different physical processes; and (ii) implies self-consistent
renormalization in both amplitude and relaxation rate of the dynamical susceptibility (within
a given fluctuation).

In the light of the these results, it is interesting to note that inelastic neutron spectra for
polycrystalline samples of UCu5 (TNéel = 16 K) have been interpreted with two characteristic
energy scales [36]; the first is a narrow (Gaussian) feature which peaks in intensity in the
paramagnetic phase around 20 K with a width ∼0.5 meV and appears to account for an
excess intensity at low energies in the range of |Q| of the antiferromagnetic wavevector;
and the second is a broad (Lorentzian) component of ∼10 meV width unaffected by the
transition at TNéel. The rapid increase in scattering cross section of the low-energy Gaussian
component on cooling for 20 K < T < 40 K may be indicative of a build-up of phase
coherence between dynamic, antiferromagnetically correlated blocks which eventually gives
way to magnetic order below 16 K [37]. In figure 13 the values for the bounding relaxation
rates in UCu4Pd estimated from the neutron scattering and thermodynamic techniques are
given, as are the values of the Gaussian and Lorentzian features of the host compound
UCu5. The substantial agreement between the findings for these compounds suggests a
continuity of physical properties. In particular, the transfer of spectral weight out of the
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(q, ω) correlated Gaussian mode in the paramagnetic phase of UCu5 into the wavevector
independent distribution D(�) of UCu4Pd may be seen as a process of localization in space
and time of the magnetic fluctuations on passing to the non-Fermi-liquid phase. This space-
time fragmentation of antiferromagnetic fluctuations is consistent with the increasing role of
phase-incoherent, dynamical heterogeneities, being determinant in the properties of the non-
Fermi-liquid phase as reflected in the analyses by the loss of low-frequency correlations which
become renormalized into modes of increased relaxation rate.
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Figure 13. The values for the bounding relaxation rate in UCu4Pd estimated from neutron
scattering, χ(T ), and C/T results given as the solid, dashed, and dotted lines respectively. The
corresponding values estimated from the measured Gaussian (low-energy temperature-dependent)
and Lorentzian (high-energy temperature-independent) components in UCu5 [22] are given at 20 K
as open squares.

Bringing together the results obtained from the analysis of neutron scattering data and
the heat capacity, a change of regime appears around TNéel for the host. Above ∼20 K the
characteristic speed-up and redistribution in momentum space of relaxation modes is in accord
with the general suppression of susceptibility on passing from UCu5 to the non-Fermi-liquid
composition. The presence of an incipient phase transition in the non-Fermi-liquid phase below
∼TNéel host involves the loss of short-timescale (and short-spatial-scale) modes (as determined
in the analysis of the heat capacity, figure 13) down to the frequency of ∼kBTNéel/h̄ ∼ 1 meV.
This supports the notion that a bulk (quantum) critical point, at which the timescale (and
spatial scale) of persistent magnetic order diverges, may be identified as the point of formation
of stationary mean-field phase coherent feedback [37]. The increased role of (antiferro-)
magnetic correlations inferred at low temperature may be anticipated to be marked by a
developing magnetic structure factor. Such a focusing of response in reciprocal space would
also contribute to a reduction in the coefficient η as estimated by the C/T ratio. Application of
a magnetic field acts in some sense in the opposite direction to lowering the temperature, as it
selectively freezes the lowest-energy modes leading to a Fermi-liquid like response associated
with a relatively high characteristic relaxation rate and hence low C/T . Further understanding
may come on extending neutron scattering data to lower temperatures and frequencies under
variable magnetic field.

3.2. Analysis of CeCu5.9Au0.1

3.2.1. Analysis and scaling of inelastic neutron scattering spectra. CeCu5.9Au0.1, based on
the host compound CeCu6, has been established as one of the archetypal non-Fermi-liquid
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compounds in view of its thermodynamic and transport properties. Interesting questions have
been posed as to its situation in the vicinity of an antiferromagnetic QCP with the host material
considered as exhibiting a nearly ideal Fermi-liquid state [38]. The inelastic spectra [25, 39, 40]
are presented at very low energy transfer at low temperature. The position of the maximum
in the energy response at fixed wavevector transfer appears incompatible, within a single-pole
model, with the intensity distribution at higher energies. That is, it appears not to be possible
to fit simultaneously the sharp rising edge at the lowest frequencies with the slow falling tail to
the standard paramagnetic form. One ansatz, as adopted in [25], is, in the vicinity of the critical
wavevector, to soften the frequency exponent in the standard model from 1 to an experimentally
determined value α < 1:

χ (ω; T ) =
[
�χ(T )

� − iω

]−α

. (3.7)

In general, the smaller the coefficient α, the slower the high-frequency fall off of the
dynamical susceptibility, thus giving rise to the desired line shape. Despite the strong
dependence of the magnetic response on wavevector (see figures 1 and 2 of [25]), resolution
corrections are asserted to play a negligible role [25, 40].

The measured inelastic response in CeCu5.9Au0.1 may be readily interpreted in terms of
equation (2.4), as given by the solid lines in figure 14. From the good fits obtained, it is evident
that the analytical results will conform to the scaling law proposed in [25] with 0.75 < α < 0.8;
indeed the distributed-relaxation rate model is able to account for the systematic divergences
present in the data from the generalized scaling law. Analysis of the data presented, taken in the
vicinity of the magnetically soft point in the Brillouin zone, indicates an approximately linear
temperature dependence of �1 with saturation of �2 to the lowest temperature measured which
suggest that the sublinear value of the scaling exponent may be rationalized as in section 2.4.
In a similar light, the use of ω/aT as the scaling variable in [25] with a = 0.82kB may be seen
(equation (2.11)) as a step towards scaling in ω/�1 (see also section 3.3.1). Parametric values
for �1,2 are displayed in the inset to figure 14 (left-hand ordinate) and given in the caption;
the value T1 ∼ 0 drives a diverging non-Fermi-liquid parameter (inset to figure 14, right-hand
ordinate). Nevertheless, given the tendency towards low-temperature saturation of �2 ∼ 2 K
and recalling that both the Kondo temperature of CeCu6, ∼2 K, and TNéel ∼ 2.2 K for the
antiferromagnetic compositions with x > 0.1 are already low, it appears that experiments
may have to be carried out to still lower temperature (mK) to establish the presence of a
possible QCP.

3.2.2. Thermodynamic properties of CeCu5.9Au0.1. The experimental low-temperature ratio
C/T is given in figure 15(a) by the open circles [41]. On account of the strongly dispersive
response, we have made a fit using equation (2.33), as indicated by the solid line. The bounding
relaxation rates given by the analysis of neutron scattering data, i.e. the dashed lines in the
inset to figure 14, yield the (temperature-independent) coefficient η̃ = 0.137 ± 0.001. Since
the �1,2 distributions determined by means of neutron scattering and analysis of C/T agree,
and the dominant fluctuations are concentrated in a small volume of (quasi-2d) momentum
space around the antiferromagnetic wavevector, the overall distribution of relaxational modes
is anticipated to be similar to that of figure 2(c).

To gain information on the renormalization of long-wavelength relaxation rates away
from the antiferromagnetic zone centre, which dominates both the neutron scattering response
and low-temperature heat capacity, the thermal evolution of the bulk susceptibility has been
examined. Within the context of equation (2.20) a good description of the available data is
possible, as demonstrated by the solid line in figure 15(b) where the open squares represent
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Figure 14. The dynamic susceptibility measured in CeCu5.9Au0.1 by means of inelastic neutron
scattering [25] plotted on double-logarithmic axes. The solid lines are fits to equation (2.4) discussed
in section 3.2.1. The inset gives the parameters for CeCu5.9Au0.1 derived from fits to equation (2.4)
(left-hand ordinate). The dashed lines show the parametric values of �1,2 used in the analysis of
C/T : �1 = 0.456kB(T − 0.026) meV; �2 = 0.271 + 0.001 67 T + 0.0328 T 2 meV. The non-
Fermi-liquid parameter, equation (2.9) (right-hand ordinate), is represented as a solid line based
on the parametric values (dashed lines) for lower and upper limits, �1, �2, of the distribution
D(�). Interestingly, the non-Fermi-liquid parameter varies over similar ranges in this material and
UCu4Pd (figure 8), despite the different temperature scales and relaxation processes, which are
strongly dispersive in the former and localized in the latter.

the measurements performed at 0.1 T [41]. The solid line is calculated in the units of [41]
with the following parametric values: u/kBa = 1.51 ± 0.02; �1 ∝ (T + 0.82 ± 0.02 K);
�2 ∝ (T + 23.6 ± 0.5 K).

3.2.3. Summary of results on CeCu5.9Au0.1. In figure 16 we summarize our findings for
the bounding relaxation rates �1,2. The magnitudes of the points represented by open circles
and squares, for �1 and �2 respectively, have been determined directly by analysis of neutron
scattering data. The solid lines indicate the values of �1,2 used to analyse the low-temperature
heat capacity with one temperature-independent amplitude, i.e. the effective mode density, as
a parameter. The good agreement over the measured temperature interval in figure 15 supports
the validity of this parametrization. Finally, since the thermodynamic susceptibility involves
the integral over all q = 0 excitations, i.e. the experimental technique has no intrinsic energy
resolution, the measured temperature dependencies of χ1,2, as determined in figure 15(b), have
tentatively been converted to q = 0 relaxation rates using the measured neutron prefactor,
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Figure 15. (a) Experimental values for C/T in CeCu5.9Au0.1 versus T [41]. The solid
line is calculated from equation (2.33) with the following amplitude coefficient and bounding
relaxation rates: η̃ = 0.137 ± 0.001; �1 = 0.456kB(T − T1) meV, with the value derived
from C/T of T1 = 0.026 ± 0.002 K (a neutron scattering fit to three available data points
gives T1 = −0.5 ± 0.2 K); �2 = 0.271 + 0.001 67 T + 0.0328 T 2 meV (from both neutron
scattering and C/T ). The inset to figure 14 gives the values of �1, �2 used in this analysis, as
dashed lines. (b) Experimental values for χ(T ) given as open squares [41]. The solid line is
calculated after equation (2.20) with the following parametric values: u/kBa = 1.51 ± 0.02;
�1 ∝ (T + 0.82 ± 0.02 K); �2 ∝ (T + 23.6 ± 0.5 K).
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Figure 16. Summary of the bounding relaxation
rates for D(�) in CeCu5.9Au0.1. The points
are determined by analysis of inelastic neutron
scattering data, the solid lines from C/T , and the
dashed lines estimated from the bulk susceptibility
using the measured neutron prefactor, a1 = 0.456.

a1 = 0.456, and are given as dashed lines in figure 16. The implied suppression on cooling of
the upper relaxation rate around the antiferromagnetic wavevector (i.e. the difference between
upper dashed and solid lines) suggests that, whilst above ∼4 K the magnetic response may
approach (quasi-) local, q-independent behaviour for the full spectrum of relaxation modes,
at low temperature an overall softening of the high-frequency spectrum occurs in the vicinity
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of Qafm. A similar situation to that in UCu4Pd may then pertain, where, for T > TNéel host,
the response is dominated by an approximately local distribution D(�) which may condense
around the residual antiferromagnetic correlations in the low-temperature limit.

In this context it is illuminating to recall that the quasielastic response of the non-magnetic
host, CeCu6, has been interpreted with a linewidth that is approximately constant at low
temperature (� ∼ 0.5 meV) and rises as

√
T above 3 K to reach ∼1 meV at 10 K [22]

(i.e. of the form anticipated in figure 2(b)). The magnitude and thermal evolution of the
linewidth in the non-magnetic host are thus very close to those estimated around q = 0
in CeCu5.9Au0.1 in the SED approximation, �para = √

(�1�2), using the bulk susceptibility
values of �1,2. This too is consistent with modest renormalization of relaxation rates at long
wavelengths on passing to the CeCu5.9Au0.1 composition. These observations suggest that
the passage from paramagnetic CeCu6, via the critical composition, to the magnetic state
for Au concentrations >0.1 is signalled by an overall softening of the lowest relaxation rate
at the critical composition and accompanied by the selective quenching of high-frequency
modes around the incipient antiferromagnetic wavevector (as in figure 4(c)). We now turn
to the heat capacity; equation (2.27) reproduces successfully the low temperature value
of C/T in CeCu6 on inserting the q = 0 values of �1,2 estimated for CeCu5.9Au0.1

from the bulk susceptibility, supporting a global similarity in dynamics consistent with the
interpretation of the temperature dependent relaxation rate. Furthermore, the low temperature
amplification of C/T in CeCu5.9Au0.1 over CeCu6, together with the small coefficient η̃

estimated in equation (2.33), implies a focusing of the non-Fermi-liquid fluctuations around
the antiferromagnetic wavevector. These observations bolster the notion that on doping with
Au, the major renormalization in the magnetic response is restricted to the vicinity of the soft
wavevector, Qafm, and stimulate further, direct, neutron scattering measurements of the mode
structure in both critical and weakly antiferromagnetic compositions over a wide range of
wavevectors and temperatures.

3.3. Doped rare-earth cuprates

3.3.1. Analysis of La1.95Ba0.05CuO4. As the compound is a member of the family of high-
Tc cuprates, its anomalous normal and superconducting properties have made it the focus of
intensive investigation. This particular composition, lying between the antiferromagnetic and
superconducting phases, exhibits an anomalous ρ(T ) with a rapid fall from low temperature to
50 K above which it increases in an approximately linear, non-Fermi-liquid like manner. This
behaviour prompted the question as to whether, on doping, the material passes close to a QCP en
route from an antiferromagnetic insulator through a spin-disorder phase to a superconductor
[9]. The absorptive part of χ derived from the neutron data has an energy profile which
exhibits a sharp rising edge at low temperature and then is almost energy independent up to
100 meV (figure 3 of [9]). The data follow a qualitatively different scaling function from the
ansatz of Schröder et al [25] for which the high-frequency tail would require α → 0, which
is incompatible with the sharp initial rise. Within our model form, the high-frequency tail
suggests an effective roll-off frequency, �2, above 100 meV whilst the change of slope with
temperature of the onset of χ ′′(ω), figure 17, suggests a small value for �1 which increases with
temperature. We find for the following temperature dependence for the model parameters:

�1 = 0.51kB(T − 5) meV

�2 ∼ 150 meV

A ∝ 1/(�2 − �1).

(3.8)
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The data given (open circles) are well reproduced (solid lines) in the plots of figure 17. The
characteristic temperature T1 ∼ 5 K, at which point in this simple model �1 = 0, is a measure
of the spin-disorder freezing temperature previously estimated as 8 K [9]. The extrapolated
temperature for SED would be ∼2000–3000 K. Below this temperature, but sufficiently above
5 K, we can approximate the response as

χ ′′ = A

[
arctan

(
ω

0.51kBT

)]
(3.9)

giving a generalized ω/kBT scaling behaviour. This preliminary analysis, which indicates that
the spectral distribution of the data falls within the scope of our model function, has however
ignored the important role of q-averaging in this experiment. The values of χ ′′(ω) have been
extracted as the result of a 2d integration in the a–b plane; we proceed to examine how such
averaging may yield the generic functional form of equation (2.4).

-40

0

40 10K

χ"
(ω

)

La
1.95

Ba
0.05

CuO
4

-20

0

20
64K

χ"
(ω

)

-20

0

20

-4 0 4 8

164K

χ"
(ω

)

E (meV)

Figure 17. The dynamic susceptibility estimated
in La1.95Ba0.05CuO4 by means of inelastic neutron
scattering versus energy transfer at three temperatures
[9]. The solid lines are fits to equation (2.4) discussed
in section 3.3.1. The parametric values are �1 =
0.51kB(T − 5) meV and �2 ∼ 150 meV.
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3.3.2. 2d q-space averaging in the analysis of La1.95Ba0.05CuO4. We start by assuming SED

χ ′′ = ω�χ

ω2 + �2
(3.10)

that is type 1 behaviour with no intrinsic distribution of relaxation rates invoked, as in
figure 3(c). What is measured (given the assumption of good energy resolution and loose
q-resolution) is∫

χ ′′(q, ω) ddq =
∫

ω�χ

ω2 + �2
ddq (3.11)

where d is the dimension of q-space integration performed in the experimental realization of
χ ′′(ω). The details of the calculation are given in appendix 2. In the case of a 2d integral
about a critical wavevector (figure 2 of [9]), when χ(q) may be expressed in standard form,
we obtain 〈

χ ′′〉
2D = π

c

[
arctan

(
ω

�1

)
− arctan

(
ω

�1(1 + λ2Q2)

)]
(3.12)

where χ(q)−1 = χ−1 + cq2 and the correlation length λ has been introduced as λ2 = cχ .
Since �1 = uχ−1(T ), the form of �1 (equation (3.8)) appears naturally if χ−1(T ) is of Curie–
Weiss form with a critical temperature T1 ∼ 5 K, and the observation that �2 is independent
of temperature is recovered in the limit where λQ � 1 (i.e. Q � inverse correlation length),
which yields �2 = ucQ2

2. For u ∼ γQ (as in equation (3.4)) we obtain � ∼ 100 meV using
parameters not far from the canonical transition metal values, namely, γ ∼ 10−3 meV Å,
c ∼ 105 Å2, and Q ∼ 1 Å−1. The evidence of dispersion (figure 2 of [9]) and the reasonable
parameter values for the relaxation rate suggest that the 2d q-space integration may be critical
in understanding the spectral form. This implies that, despite the anomalous spectral response
and temperature dependence of ρ(T ), the underlying dynamics may be characterized by the
canonical antiferromagnetic paramagnon form as found for example in Cr1−xVx [16] and
V2O3 [19].

In this context the NMR relaxation rates as a function of doping level and temperature
in the related compound La1−xSrxCuO4 reveal an interesting behaviour. Analysis of the local
response probed at NMR frequencies reveals the inferred width of the D(�) distribution to be
narrowest in the neighbourhood of the spin-disorder x = 0.04 composition. We consider this
response in the following section.

3.3.3. NMR in La2−xSrxCuO4. Following equation (2.23), comparison with the data for
La2−xSrxCuO4 given in figure 18 shows general agreement with the experimental situation
[27, 42]. In detail, the fitted lines in figure 18 are based on equation (2.23) with �1, �2 of the
form used in equation (2.21) assuming a1 = a2; the parametric values of T1, T2 are given in
the figure caption. The inset of figure 18 gives the values of the deduced non-Fermi-liquid
parameter as a function of temperature for each composition. The near-zero value for the
Brillouin zone averaged NFL parameter of the x = 0.04 composition indicates the effective,
local D(�) to take on its narrowest distribution (i.e. approach simple paramagnon behaviour),
as found in La1.96Ba0.04CuO4, whilst at the doping level most favourable to superconductivity,
x = 0.15, it manifests the broadest spectral distribution D(�) with the strongest signature of
the non-Fermi-liquid state.

4. Conclusions

The interface between experimental data and microscopic theory on low-energy phenomena
may conveniently be made through the dynamical susceptibility. As outlined for a series of
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Figure 18. The inverse relaxation time in La1−xSrxCuO4 as a function of temperature for various
compositions [27, 42]. The solid lines are fits to the equations discussed in section 3.3.3 with
a1 = a2, T1 = −90 K, and T2 taking the values 286 ± 16 K, −90 ± 8 K, −500 ± 30 K,
−4300 ± 1200 K for x = 0.0, 0.04, 0.075, 0.15 respectively. The inset gives the non-Fermi-liquid
parameter for La1−xSrxCuO4 as a function of temperature for various compositions. The values for
the antiferromagnetic ordering compound are characteristically negative and, at the spin-disorder
composition, x = 0.04, the local response is indicative of a narrow effective distribution D(�).
On doping into the superconducting phase, the non-Fermi-liquid parameter increases to reach a
maximum at optimum doping level and low temperatures.

exemplary materials in section 3, this enables a unified treatment of kinetic and thermodynamic
properties in the non-Fermi-liquid state extending from the microscopic space-time scales
probed by inelastic neutron scattering to the thermodynamic regime. The non-Fermi-liquid
signatures are reproduced by generalizing the SED (Fermi-liquid) response to an incoherent
sum of susceptibilities over a flat compact distribution, D(�).

The approach may be seen as an extension of mean-field theory for the response function.
From the refinement of the Curie–Weiss approach, to account for the presence of fluctuations
on the average, homogeneous susceptibility in self-consistent approximations based on the
scheme of Murata and Doniach [43], the renormalization is extended here to the local response
function. Appropriate microscopic models for an interpretation of D(�) revolve around the
space-time filtering of the underlying fermion field with respect to the coherence volumes of
both its elementary excitations and those of the experimental probe. In our treatment, the
fermion field is eliminated in favour of a set of dissipative magnetization-density modes which
provide the backcloth to models discussed in the text and appendix 1. The analyses given
suggest an exquisite sensitivity of the response function to the local (magnetic) environment.
The weak temperature dependence of �2 indicates that the response on short timescales is
not modified; thus the corrective terms, at least for materials not too far from a Fermi-liquid
like regime, are essentially a low-frequency phenomenon and may therefore be mimicked
within a renormalization scheme10. The concept of corrective terms local in space and

10 With the caveat that application of renormalization in the vicinity of a QCP as T → 0 assumes homogeneity of
response to arbitrarily large space-time scales where a maximum sensitivity to the combined effects of heterogeneity
and the intrinsic coherence volumes of the quantum field arises.
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time, as an essential modification of the response up to mesoscopic length scales, gives
interesting perspectives on a variety of phenomena; examples include structural and electronic
supercooled liquid- and glass like phases, (1/f ) noise, the approach to the critical point, and
the antiferromagnetic state [3–7, 37].

In conclusion, whilst the analysis of NER and the associated non-Fermi-liquid state relies
only on development of equation (1.1), a semi-microscopic interpretation may be given in
terms of spontaneous dynamical heterogeneities. The dual aspects of essential incoherence
and local susceptibility renormalization within fluctuating space-time volumes are inferred
from the simultaneous analysis of kinetic and thermodynamic data. It remains a challenge to
extend thermodynamic and transport response theory to include the effects of both spontaneous
dynamical heterogeneity and the space-time coherence properties of the elementary excitations
and the probe; from the analogy with diffraction phenomena, one may anticipate a rich
phenomenology based on the interplay of time and length scales [44].

It is hoped that the ideas and analyses developed may stimulate further experiments on
these and related materials11, thoughts on the possible role of spontaneous heterogeneity, and
investigations of other, complementary scenarios for microscopic theories of the dynamical
magnetic susceptibility in the non-Fermi-liquid state.
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Appendix 1. Models for D(Γ) in non-Fermi-liquids

A1.1. Introduction

Empirical evidence, based on the analysis of neutron scattering and thermodynamic measure-
ments, suggests a generic NER (non-Fermi-liquid) susceptibility of the model form

χ(ω) = u

�2 − �1
ln

[
�2 − iω

�1 − iω

]
(A1.1)

where �1, �2 are lower and upper bounds on the relaxation-rate distribution. Considerable
experimental evidence also exists for a continuous transition between the non-Fermi-liquid
and Fermi-liquid states, for example with varying temperature, through doping, under applied
hydrostatic pressure, or under the application of a field. The smooth transition between equation
(A1.1) and the susceptibility of SED:

χ(ω) = u

�(q) − iω
(A1.2)

may be effected through the following integral representation of χ :

χ(ω) =
∫

d� D(�)χ(�;ω) (A1.3)

where the distribution D(�) has the flat compact/Dirac form in the non-Fermi/Fermi-liquid
case respectively. Thus, in the non-Fermi liquid at each wavevector, there is not just one

11 The distribution D(�) is not restricted to magnetic relaxation mechanisms; examples include electric field gradient
relaxation as detected by means of NQR, quadrupole or orbital relaxation, or (anti-) ferroelectric relaxation, etc.
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relaxation rate, but rather a distribution, D[�(q)]. At a formal level, the requirement of
equation (1.1) to yield χ ′′(ω) as in equation (2.4) (as is empirically verified by neutron
scattering) is only that D(�)�χ� = constant. In addition to arguments of self-consistency,
i.e. the relaxation rate determines and is determined by the local susceptibility, and continuity to
the Fermi-liquid phase, the choices �χ� = u and D(�) = 1/(�2 − �1) appear unique in being
able to give, at the same time, an explanation of both the inelastic neutron scattering data and
the thermodynamic properties. For example, at a given temperature, setting χ� = constant,
independent of �, could give an empirically correct form of χ ′′(ω) for the interpretation of
inelastic neutron scattering data on takingD(�) ∝ 1/� but at the expense of the self-consistent
renormalization of the local amplitude and relaxation rate, and a low-temperature limit to C/T

given by
C

T
≈ 1

(�2 − �1)

1

ln(�2/�1)
(A1.4)

which would be incompatible with the observed divergences.
To further the analysis of data, it is useful to distinguish the following scales of space and

time in an experiment:

(a) sample:

• Vsample, Tsample: volume and lifetime of sample (metastable electronic or structural
states);

• vi, τi : volume and timescale of (dynamic) heterogeneity (of ith microregion);
• ζ, �−1(q): space-time correlation scales of fluctuations;

(b) probe:

• Vexpt, Texpt: experimental (probe) volume and timescale;
• vprobe, tprobe: effective neutron/photon/quasiparticle coherence volume and time.

When not dealing with kinetic effects or metastable glass like states the sample variables,
Vsample andTsample, may be eliminated in favour ofVexpt andTexpt. The effective probe coherence
takes into account the overlap of incident and scattered probe coherence volumes and is
designated vprobe and tprobe. It gives the maximum characteristic scales of space and time
that can be resolved, i.e. ζv−1/3

probe < 1 gives the maximum correlation length and �mintprobe > 1
gives the minimum � in D(�) that can be resolved. The interplay of sample and probe space-
time scales defines nine experimental regimes, given in table A1, whose leading elements are
illustrated in figure A1, upper frame (space) and lower frame (time). Within each category, due
attention must be paid that the relaxation rate and correlation length lie within the experimental
resolution. In the case where the relaxation rates are dispersive, a type 1 distribution may
be generated by augmenting the angular wavevector averaging which takes place over the
experimental volume with explicit summations of recorded spectra.

A1.2. Type 1 distributions

Categories (3), (6), (9): in the category (9) phase with a dispersive (anisotropic) response, �(q)

is invariant overVexpt and Texpt. Averaging overVexpt (q-averaging) gives rise toD(�) under the
implicit assumption that vprobe and tprobe are large enough to resolve ζ and �(q) respectively.
Under categories (3), (6), gradients in temperature, pressure, doping, or intrinsic entropy-
driven microscopic twinning, vacancy and defect-density variations (which may develop a
quasiperiodic nature as in spinodal decompositions) give rise to a distribution of relaxation
rates which are averaged over by Vexpt with the implicit assumption that vprobe and tprobe are
large enough to make the measurement.
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Table A1.

τi < tprobe < Texpt tprobe < τi < Texpt tprobe < Texpt < τi

vi < vprobe < Vexpt (1) Coherent spatial sum, (2) Coherent spatial sum, (3) Coherent spatial sum,
averaged over Vexpt ; averaged over Vexpt ; averaged over Vexpt ; static
coherent temporal sum, incoherent temporal sum
averaged over Texpt over Texpt

vprobe < vi < Vexpt (4) Incoherent spatial sum (5) Incoherent spatial sum (6) Incoherent spatial sum
over Vexpt ; coherent over Vexpt ; incoherent over Vexpt ; static
temporal sum, temporal sum over Texpt

averaged over Texpt

vprobe < Vexpt < vi (7) Homogeneous; coherent (8) Homogeneous; (9) Homogeneous; static
temporal sum, averaged incoherent temporal sum
over Texpt over Texpt

A1.3. Type 2 distributions

Categories (1), (2), (4), (5), (7), (9): for simplicity, the homogeneous slow mode, category
(7), is detailed—that is, the relaxation rate is taken to be invariant over Vexpt and τi < tprobe.
This artificial restriction, like that of the frozen dynamical heterogeneity model considered
in section 2.2, is lifted in the general dynamic heterogeneity scenario. The summation over
tprobe gives rise to D(�) under the implicit assumption that vprobe and tprobe are large enough
to resolve the fluctuations and, for dispersive relaxation, that implicit averaging over Vexpt

(q-averaging) is accounted for. The non-Fermi-liquid phase is considered as a dense set of
incoherent fluctuations (characterized by their relaxation rates, �i) between which the system
evolves. Here we explore the possibility through a discussion of the magnetization-density
correlation function, C(t). We define the following Fourier transform pair:

C(t) =
∫ ∞

−∞
dω e−iωtχ(ω)

χ(ω) = 1

2π

∫ ∞

−∞
dt eiωtC(t).

(A1.5)

For notational convenience, any spatial dependence (i.e. limits imposed both by spatial size
of heterogeneity and dispersion) is momentarily neglected, and, with the focus on the time
evolution, the integral (A1.3) may be written as

χ(ω) =
∫

d� D(�)χ(�;ω) =
∑
i

W(�i)χ(�i;ω) (A1.6)

where W(�i) = Wi is the weight associated with relaxation rate �i occurring within a primary
field fluctuation of the temporal representation, niτi/Texpt (cf. the volumetric representation
nivi/Vexpt). This gives the correlation function, C(t):

C(t) =
∫ ∞

−∞
dω e−iωt

∫
d� D(�)χ(�;ω) =

∑
i

WiCi(t) (A1.7)

with the contribution of the ith relaxation rate:

Ci(t) =
∑
j

θjigij (τi; t) (A1.8)
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Figure A1. Upper frame: a typical distribution of spatial length scales in a neutron scattering
problem appropriate to the row headings of table A1. Schematically similar diagrams apply for
x-ray and quasiparticle scattering. In a given experiment, the spreads of vprobe and vi may be
significantly larger than indicated, leading to partial resolution of, for instance, the distribution
of heterogeneities. The cases are as follows: (a) an effectively homogeneous sample; (b) a
spatial incoherent sum of heterogeneities over Vexpt is to be taken; (c) a coherent spatial sum
of heterogeneities over vprobe is to be taken. The correlation length of the magnetic fluctuations
must be considered in each case. Lower frame: a typical distribution of temporal length scales
in a neutron scattering problem appropriate to the column headings of table A1. Schematically
similar diagrams apply for x-ray and quasiparticle scattering. The cases are as follows: (a) static
heterogeneities; (b) an incoherent temporal sum of heterogeneities over Texpt is to be taken; (c) a
coherent temporal sum of dynamical heterogeneities over tprobe is to be taken. The overlap of the
central distribution, D(�), with the spread of both τi and tprobe must be considered in each case.

where, for an interval τi as in figure A2,

gij (τi; t) = 1

τi

∫ τi/2

−τi/2
dt ′ mi(t

′)mj (t
′ + t) (A1.9)

and θij is the coherence function between intervals i and j . The characteristic time intervals,
τi , may be regarded as time domains superposed on the inverse relaxation rate in analogy
with volume domains (e.g. of moment direction) which exist on top of the spatial correlation
length. In the Fermi liquid θij = 1 for all pairs i, j , whilst the incoherence characteristic
of the non-Fermi-liquid reduces this to θij = δij . Parenthetically, it is noted that, from this
perspective, SED may arise in two distinct ways. First, on tuning the degree of coupling in the
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primary response function to the local environment via the temperature, doping, or pressure,
etc, the distribution D(�) may renormalize and become sufficiently narrow that differences in
relaxation-rate renormalization become negligible, (�2 − �1) 
 √

(�1�2), whilst τi remains
less than Texpt giving a normal paramagnon (Fermi-liquid like) response; alternatively, the
tuning may suppress local renormalization giving rise to D(�) ∼ δ(� − �0). Within a given
context the meaning will be clear. In the case of incoherence, θij = δij , there are two possible
regions of behaviour within each of the categories of table A1 corresponding to �iτi being
greater or less than unity. In the first, the correlation function is determined by D(�) given that
the contributions over each time interval τ are complete, such a non-Fermi-liquid state may be
thought of as a multiple Fermi liquid which is independent of the distribution of τ . In contrast,
when dominated by strong perturbations which distribute τ over small time intervals and break
the condition �τ � 1, a more careful discussion of the distribution of the phase coherence time
D(τ ) in relation to D(�) and tprobe is required (figure A1, lower frame). The former situation
will prevail for a (self-consistent) response dominated by fluctuations in the primary variable
and at least for the higher-frequency magnetic relaxation rates in the presence of secondary-
field heterogeneities. The latter scenario is compatible with dynamical heterogeneities driven
by a secondary field. In dealing with spatial heterogeneity, similar considerations apply for
the correlation length, ζ , and the volume of heterogeneity.

The approximate constancy of u allows the renormalization in amplitude and relaxation
rate of the dynamical susceptibility to be effected through χ−1

i . Consequently the change in
microscopic dynamics from one time interval, τi , to another may be marked by the value of
χ−1
i . The fluctuation-dissipation theorem relates a high susceptibility to enhanced magnetic

correlations; a high-susceptibility state is therefore liable to be robust and have an extended
lifetime, τ . In the light of this, the Curie–Weiss like temperature dependence of the lowest
relaxation rate, �1, observed at elevated temperature in UCu4Pd may be rationalized through
a heuristic appeal to the presence of persistent, residual, antiferromagnetic correlations.

Figure A2. Schematic representations of heterogeneity time intervals, τi . In the upper part,
(a), the correlation function is to be evaluated within a given time interval τi corresponding to
a contribution gii (τi , t). In the lower part, (b), the cross term, gij (τi , t) is illustrated. On the
assumption of incoherence in the non-Fermi-liquid phase, this cross term is neglected, whilst in
the (coherent) Fermi-liquid state, it is to be included.
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A1.4. Dynamic heterogeneity

Categories (1), (2), (4), (5) assume each microregion within Vexpt to evolve independently. The
presence of dynamic spatial inhomogeneity implies averaging over both Vexpt and Texpt with the
caveat that the restrictions concerning vprobe and tprobe are applied. The central inference of the
analysis is the concept of a heterogeneity dependence of the relaxation rate, �X = �0f (X),
in contrast with the SED scenario with one (wavevector dependent) relaxation rate, �0(q),
applicable to the dissipation of all spontaneous fluctuations in the magnetization density.
Results of sections 2 and 3 suggest the simplest form, �X = �0(χ0/χX), i.e. scaling of
the relaxation rate with the local susceptibility, to capture the essential effects. Apart from
magnetization-density fluctuations, the origin of the local renormalization of χ may include
secondary fields—for example, spontaneous fluctuations in the atomic position and orbital
occupation (e.g. valence, screening, and crystal-field fluctuations) or a conservation law, as in
the exhaustion of screening.

Given that the (divergent) spin-density fluctuations themselves may act as regions of local
susceptibility enhancement, a profound difference may be expected between the behaviour
of materials with and without approximate spin conservation. In the former, creation or
annihilation of a spontaneous spin-density fluctuation requires transport of the excess spin
density over the length scale of the inhomogeneity (� is necessarily dispersive), whilst in the
latter, creation or annihilation may take place on a local scale. The decoupling of the size of the
fluctuation and the length scale over which relaxation occurs implies that, in systems without
spin conservation, the local susceptibility enhancement will be effective for the full complement
of modes. In contrast, spin-conserving systems have a tendency to narrow distributions, D(�),
at long wavelengths where the principal enhancements are anticipated. In the light of this,
non-spin-conserving materials may be expected to exhibit the more pronounced signatures
of extended distributions D(�) and associated non-Fermi-liquid behaviour in the vicinity of
critical points.

A1.5. Implicit incoherence of modes and the emergence of phase locking

The non-Fermi-liquid susceptibility has been expressed as an incoherent sum, equation (1.1);
there is no inclusion of cross coupling terms [17, 45]. From the perspective of the dynamic,
slow-mode model we have no contributions which span more than one interval of coherence
time (τ ), the absence being an expression of a basic phase incoherence in the non-Fermi-liquid
state. The lack of phase coherence between τ -intervals precludes formation of a feedback field,
the growth of a particular χi , and associated dominant-mode behaviour. In order to pass from
the non-Fermi-liquid to coherent Fermi-liquid regimes, temperature, external fields, pressure,
or chemical composition must be exploited to stabilize a dominant mode. The concomitant
elimination of phase incoherence between dynamical heterogeneities over significant time
intervals introduces a degree of rigidity into the dynamics which may permit growth of
an oscillatory (damped) decay in the magnetization density and give rise, in a continuous
fashion, to the evolution of spectral forms of χ ′′ characteristic of strongly correlated states.
An example may exist in the transfer of spectral weight in the paramagnetic phases of the
UCu5–UCu4Pd system where the low-energy mode, located around Qafm in UCu5, is replaced
by a wavevector independent response broadly distributed in energy, entirely consistent with
the increasing importance of phase-incoherent dynamical heterogeneities as suggested by the
analysis of the inelastic neutron scattering and heat capacity data in section 3. That is, at a
fundamental level, fluctuations have an amplitude and phase (ultimately derived from those
of the underlying quantum field) both of which may depend on (r, t). The phase correlations
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may, for instance, be spatially weak with long time duration as in the formation of microscopic
domains and, in general, are characterized by a multiple space-time covariance function. For a
given experiment, the measured quantity is strongly influenced by the ratio of the probe space-
time coherence volume to the characteristic scales of this multivariate correlation function.
In instances where the covariance decays rapidly, a short-timescale probe, e.g. resonant x-ray
scattering, may be anticipated to give an enhanced response in comparison with a measure of
the (quasi-) equilibrium response as revealed through, for example, C/T , NMR, or inelastic
neutron scattering. As noted in the analyses of UCu4Pd, section 3.1.5, and CeCu5.9Au0.1,
section 3.2.3, the approach to magnetic order may, in some instances, involve the loss of
high-frequency relaxation rates (figure 2(c)) followed by the softening of the lowest relaxation
rate in the immediate vicinity of the transition. Such a perspective may shed some light on
the problem of probe-dependent (nominal) critical points observed for example in weakly
(antiferro-) magnetic heavy-fermion superconductors. Similar considerations are involved in
the spatial domain (see [44] and references therein).

For heterogeneities where the probe space or time coherence volume is small on the scale
of the inhomogeneity—categories (4), (5), (6) and (2), (5), (8) of table A1 respectively—the
〈 〉Texpt,Vexpt

averaging of the correlation function over the independent probe coherence volumes
is incoherent. In the opposite regime—categories (1), (3), spatial and (1), (7), temporal—the
intrinsic incoherence of adjacent heterogeneities plays an essential role; microscopically, a
(weak) localization of the phase eigenmode to a given heterogeneity may be invoked. Such
localization is anticipated to be most effective in the presence of a wide segregation of limited
volumes having well resolved eigenmodes. With the emergence of heterogeneous regions of
successively larger τi and vi , the energy spacing between eigenmodes decreases, the discrete
nature (incoherence) of the dynamical heterogeneity is lost, and the system passes towards a
coherent (Fermi-liquid) regime.

A1.6. C/T in the dynamical heterogeneity model

A one-to-one correspondence of relaxation rate with volume of heterogeneity allows the
(magnetic) relaxational contribution to the heat capacity to be written as follows:

lim
T→0

C

T
= υπk2

B

3

∑
i

∑
q

1

�i

ni (A1.10)

where ni is the degeneracy of volumes vi occurring in Vexpt. The number of modes is
proportional to the number of effective magnetic ions in vi ; hence, for wavevector independent
relaxation rates,∑

q

→ ηvi (A1.11)

and

lim
T→0

C

T
= η

υπk2
B

3

∑
i

nivi

�i

(A1.12)

giving, over the total volume,

lim
T→0

1

Vexpt

C

T
= η

υπk2
B

3

∑
i

nivi

Vexpt

1

�i

. (A1.13)

The correspondence �vi ↔ vi gives∑
i

nivi

Vexpt

1

�i

=
∫

d� D(�)
1

�
(A1.14)

for a normalized distribution D(�) and hence equation (2.30) in the main text.
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A1.7. Homogeneous static state

In addition to phenomenological models for χ(q, ω) which break with the underlying
Fermiology [8], an alternative microscopic basis for a model D(�) may be invoked via a
starting set of non-interacting relaxation modes which propagate in a dispersive and non-linear
medium. In the case of a set of normal modes with weak interactions, the resonance conditions
of scattering, ω(q1) + ω(q2) = ω(q3) and q1 + q2 = q3, must be satisfied at each collision;
however, the presence of strong interactions broadens the modes and the conditions become
less stringent. For overdamped modes the conditions may become sufficiently relaxed that
any given �(q) will interact with a host of other modes to generate a broad distribution at each
wavevector. The multiple scattering of each starting mode will rapidly destroy the mutual
phase correlations of a given scattering triad and may establish the incoherence embodied
in equation (1.1). Viewed from an alternative perspective, anharmonicity is incompatible
with wavevector/frequency eigenstates and implies space-time localization, i.e. formation of
dynamical heterogeneities.

Appendix 2. q-space averaging

A2.1. Q-resolution in type 1 non-Fermi liquid

We start by assuming, for simplicity, that the intrinsic response is that of the SED:

χ ′′ = ω�χ

ω2 + �2
. (A2.1)

That is to say, there is a single relaxation rate, �, at each wavevector and temperature. No
distribution of relaxation rates is invoked. What is measured (given our assumption of good
energy resolution and loose q-resolution) is∫

χ ′′(q, ω) ddq =
∫

ω�χ

ω2 + �2
ddq (A2.2)

where d is the dimension of q-space integration performed in the experimental realization of
χ ′′(ω). Writing ddq as gqd−1 dq where g is a geometric factor of integration,∫

χ ′′(q, ω) ddq =
∫ [

�(q)χ(q)gqd−1

d�/dq

]
dθ (A2.3)

with

�(q) = ω tan(θ). (A2.4)

Setting the condition,

�(q)χ(q)gqd−1

d�/dq
= constant = 1

B
(A2.5)

one measures the following quantity:∫
χ ′′(q, ω) ddq =

∫
dθ

B
= 1

B

[
arctan

(
ω

�(Q1)

)
− arctan

(
ω

�(Q2)

)]
. (A2.6)

This condition may be conveniently expressed as follows:

�(Q2) = �(Q1) exp

(
B

∫ Q2

Q1

χ(q) ddq

)
. (A2.7)
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A2.2. 2d q-space averaging

In the case of a 2d integral and when χ(q) may be expressed in standard form we obtain

�(Q2) = �(Q1)

[
1 + λ2Q2

2

1 + λ2Q2
1

]gB/(2c)

(A2.8)

where the correlation length λ has been introduced in standard fashion, λ2 = cχ . If the
integration is performed around the critical wavevector, i.e. Q1 = 0, outwards, then

�(Q) = �(0)(1 + λ2Q2)gB/(2c) ≈ �(0)

(
1 +

gB

2c
λ2Q2

)
. (A2.9)

In the standard model for the relaxation rate, we obtain �(Q) = �(0)(1 + λ2Q2), since
1/B = g/(2c), giving

〈
χ ′′〉

2D = π

c

[
arctan

(
ω

�(0)

)
− arctan

(
ω

�(0)(1 + λ2Q2)

)]
. (A2.10)

A2.3. 1d q-space averaging

The χ ′′ = A[arctan(ω/�1) − arctan(ω/�2)] form is obtained in the case of a 1d q-space
integration of equation (A2.1) given

χ−1(q) = χ−1 + czq
2
z (A2.11)

and the condition

�(Q2z) = �(Q1z) exp

(
Bλz

cz

[
arctan(λQ2z) − arctan(λQ1z)

])
. (A2.12)

When working around the magnetic wavevector, i.e. Q1z = 0, we have

�(Qz) = �(0) exp

(
Bλz

cz

[
arctan(λQz)

])
(A2.13)

which for small λzQz gives

�(Qz) = �(0)eBχQz (A2.14)

and for large λzQz gives

�(Qz) = �(0)eBλzπ/(2cz). (A2.15)

Thus for materials whereλ−1
z is small, and lies within the spectrometer resolution, the relaxation

rate may appear largely independent of Qz, suggestive of local dynamics in this direction
despite the strong correlations implied by a large correlation length λz.

For short correlation lengths we use the small-λzQz-expansion:

�(Qz) = �(0)(1 + BχQz + · · ·). (A2.16)

This is in some sense the opposite limit to that of the cuprate problem (where integration up
to a large Q is performed) and results in a novel temperature dependence for �2. Remaining
close to the critical wavevector in the scattering plane and for small excursions, :Qz, out of
the plane we have �(0) = uχ−1 = uC−1kB(T − T0) and hence

�(:Qz) = �(0) + Bu:Qz. (A2.17)
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Appendix 3. Limiting forms and extensions of χ(q, ω)

A3.1. Limits and approximate analytical forms for χ(q, ω)

The high-frequency expansion of the susceptibility is, for ω > �1, �2,

χ ′′ = u

ω

[
1 − �2

1 + �2
2 + �1�2

3ω2
+ · · ·

]
(A3.1)

whilst for low frequencies, ω < �1, �2,

χ ′′ = uω

�1�2

[
1 − ω2(�2

1 + �2
2 + �1�2)

3�2
1�

2
2

+ · · ·
]
. (A3.2)

It is instructive to plot log(χ ′′) against log(ω). In the high-temperature limit we take
�1 ≈ �2 = akB(T − T0) giving the high-frequency (ω > �) approximation at high
temperature as

ln(χ ′′) = − ln

(
ω

u

)
−

(
akB(T − T0)

ω

)2

+ · · · (A3.3)

with a turning point at

ωhigh =
√

2akB(T + T0) (A3.4)

and the low-frequency (ω < �) approximation at high temperature as

ln(χ ′′) = 2 ln

(
u

akB(T − T0)

)
+ ln

(
ω

u

)
−

(
ω

akB(T − T0)

)2

+ · · · (A3.5)

with a turning point at

ωlow = akB(T − T0)√
2

. (A3.6)

In figure A3 the plot contains two dashed lines of plus and minus unity slope representing
the first-order approximations to χ ′′, and two approximately parabolic curves which give
the corrections to lowest order, equations (A3.1), (A3.2). The filled/open circles represent
experimental data for UCu4Pd at 300 K and 12 K respectively.

At intermediate frequencies, �1 
 ω 
 �2, χ ′′ saturates as

ln(χ ′′) = ln

(
πu

2�2

)
− 2ω

π�2

(
1 −

(
ω

�2

)2)
+ · · · (A3.7)

giving rise to a (1/f ) noise band for magnetic fluctuations in the classical limit:

〈
m2

ω

〉 ∝ kBT
χ ′′(ω)

ω
∝

(
kBT u

4�2

)
1

f
. (A3.8)

As �1 → 0, for example in the q → 0 limit of spin-conserving systems, this may yield an
alternative approach to the interpretation of macroscopic magnetic noise experiments where
the essential role of dynamical heterogeneities yields a broad spectral response.

At the level of current neutron scattering experiments, the saturation at intermediate
frequency, equation (A3.7), is seen in UCu4Pd at low temperatures (figure A3, open circles),
in good agreement with the value predicted from high temperatures. However, the data do not
extend low enough in frequency to show the eventual low-frequency return to linear behaviour
at 12 K.
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Figure A3. High-temperature data for UCu4Pd (filled circles, 300 K) and low-temperature data
(open circles, 12 K) are compared with the three limiting equations (A3.1), (A3.2), and (A3.7)
(solid lines) for the frequency dependence of χ ′′(ω). At 300 K, close to the paramagnetic regime,
�1 ∼ �2, both high- and low-frequency asymptotic limits are reached, enabling good definition of
the three model parameters, u, �1, �2. (The dashed lines of plus and minus unity slope represent the
first-order approximations to χ ′′(ω) and the two approximately parabolic curves give the lowest-
order corrections.) In contrast, the data at 12 K, whilst asymptotically approaching the saturation
limit predicted from the high-temperature data, equation (A3.7), do not extend low enough in energy
to enable a reliable estimate of �1(12 K) to be made. Using the data at saturation to estimate the
mode frequency,

√
(�1�2), yields �1 ∼ 0.1 ± 0.1 meV at 12 K.

A3.2. General forms

A sometimes useful general form is

χ(ω) = 〈χ〉 〈�〉
�2 − �1

ln

[
�2 − iω

�1 − iω

]
(A3.9)

which permits one to extract a mean susceptibility, 〈χ〉, under a given parametrization of 〈�〉;
for example, using the mode frequency of χ ′′(ω) as an estimator for 〈�〉 yields

χ(ω) = 〈χ〉
√
�1�2

�2 − �1
ln

[
�2 − iω

�1 − iω

]
. (A3.10)

When u is sensibly constant the expressions may simplify on expressing �1,2 in terms of the
inverse susceptibility, for example:

χ ′(q) = 1

χ−1
2 − χ−1

1

ln

[
χ−1

2

χ−1
1

]
. (A3.11)

A3.3. Extension of the model beyond relaxational dynamics

Pursing the notion of the build-up of phase locking and the emergence of an oscillatory mode
discussed in section A1.5 of appendix 1, a natural progression away from purely relaxational
dynamics is to consider the spectrum of a set of phase-incoherent oscillators of frequency :

under a distribution of relaxation rates D(�). By extension of equation (2.1), the susceptibility
for a damped oscillator may be written as

χ−1(q, ω) = χ−1

[
1 − ω2

:2
− iω

�

]
(A3.12)
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which gives, on integration over the inverse susceptibility,

χ ′′ = u

�2(ω) − �1(ω)

[
arctan

{
ω

�1(ω)

}
− arctan

{
ω

�2(ω)

}]
(A3.13)

where

�1,2(ω) = �1,2
[
1 − ω2/:2

]
. (A3.14)

At low frequencies, for ω 
 : we recover equation (2.4):

χ ′′ = u

�2 − �1

[
arctan

(
ω

�1

)
− arctan

(
ω

�2

)]
(A3.15)

giving, as ω → 0, an initial linear rise:

χ ′′ → uω

�1�2
. (A3.16)

In the vicinity of the pole, ω ∼ :, one has

χ ′′ = u

ω

[
1 − (�2

1(ω) + �2
2(ω) + �1(ω)�2(ω))

3ω2
+ · · ·

]
. (A3.17)

For ω = : + δ, this gives

χ ′′ = u

:

[
1 − δ

:
+ O

(
δ

:

)2

+ · · ·
]

(A3.18)

which is to first order independent of �1, �2 and yields the peak of χ ′′ below the resonant
frequency. Finally, for ω � :,

χ ′′ → u:4

ω3�1�2
(A3.19)

giving a rapid fall-off at high frequencies. The full form, with the characteristic linear rise,
broad peak with its maximum displaced to energies below the pole, :, and rapid decay at high
frequency is portrayed for some parameter values typical of the high-Tc YBa2Cu3O7−δ system
in the underdoped regime in figure A4.

To give a simple description of the changes in the scattering cross section above and
below the superconducting phase transition, we consider, within the dynamical heterogeneity
paradigm, the evolution with cooling from high temperatures for slightly underdoped cuprates.
Starting above the pseudogap temperature, T ∗, where the fluctuations are mutually incoherent,
cooling brings the system into the pseudogap regime, T ∗ > T > Tsc, with a build-up of phase
coherence between the magnetic heterogeneities. This is followed by condensation of the
superconducting phase, Tsc > T > 0. Evidence for mode softening and non-Fermi-liquid q-
selection below T ∗ in the vicinity of the antiferromagnetic wavevector, Q0 = (π/a, π/a),
in the pseudogap region comes directly from (i) the predominant weight of the neutron
scattering cross section atQ0 and (ii) the observation that on approaching the antiferromagnetic
composition (i.e. increasing strength of Q0-correlations), T ∗ increases. Passing below Tsc, the
total intensity in neutron energy-loss scattering in the vicinity of the resonance energy is given
by an essentially unchanging non-Fermi-liquid like contribution (the pole of χ ′′ as given in
equation (A3.17) is independent of changes in damping rate �1, �2 driven by the condensation
of the superconducting state), in addition to a contribution arising from the destruction of
Cooper pairs12. Given their different physical origins, the former being a generalization of the

12 In the Fermi liquid the quasiparticle states concentrated around εFermi disappear for T 
 Tsc. In a non-Fermi liquid
where the quasiparticle resonance is poorly defined in (q, ω) space, the reduction of spectral weight may, in general,
be less dramatic.
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Figure A4. An example of the form of equation (A3.15) for the response of a set of phase-incoherent
oscillators of fixed pole having a distribution of relaxation rates. The dashed line has parametric
values of the pole frequency : = 40 meV with lower and upper limits on the relaxation rate of
15 and 35 meV. Characteristically, the normal-state response is a broad distribution with an initial
approximately linear rise and a maximum of χ ′′ strongly displaced from :. The solid line is the
spectrum maintaining the same pole with increased damping and amplitude multiplied by a factor
of three. As discussed in the text, these plots may be crude representations of the response of lightly
underdoped high-Tc materials on passing through the superconducting phase transition.

normal magnetic particle–hole correlation whilst the latter arises from annihilation of coherent
particle–particle correlations, the energy and q-widths of these two contributions may differ.
As regards the part arising from scattering by an ensemble of phase-coherent Cooper pairs,
the neutron cross section may be broadly split into two parts: (i) the product of a factor
expressing the indistinguishable nature of transitions from the superconducting state and the
density of final states which largely governs the intensity (i.e. this factor only arises in the
presence of superconducting phase coherence even if its amplitude depends on the Cooper
pairing symmetry and binding energy and it drops to zero with the superconducting phase
coherence at Tsc) and (ii) a resonant denominator which reflects the pair binding energy. In
high-Tc superconductors, one may see the separation of the two effects as the sharp contrast
between (i) the rise in scattering intensity as superconducting phase coherence develops on
cooling below Tsc and (ii) the stability of the pole position, Eres [46]. The structure of the
Fermi surface in conjunction with strong evidence for a phase change of π of the symmetry of
the superconducting order parameter at Q0 suggests the presence of a superconducting phase
coherence weighting factor of 2 in the cross section relative to the normal state contribution
for T 
 Tsc [47]. Thus in the underdoped regime around (Q0, Eres) the ∼3-fold change in
cross section for T 
 Tsc to T > Tsc [46] may be rationalized in terms of one (essentially
unchanged) unit from the non-Fermi-liquid pole in addition to ∼2 units (superconducting
coherence factor) from the annihilation of Cooper pairs. In figure A4, for T < Tsc the total
susceptibility has been approximated as three times that calculated in the non-Fermi-liquid
phase with the suppression of slow relaxation processes simulated by setting the relaxation
rates, �1, �2, to numerically larger values13. For a small shift in chemical doping to optimal
Tsc where the values of T ∗ and Tsc approximately coincide, the neutron scattering amplitude at
(Q0, Eres) gives the cleanest signature of the superconducting phase transition with a fall to the

13 From equations (4.6), (4.7) it is clear that such changes in �1, �2 will force the response for ω < : and ω > : to
fall, simultaneously shifting the peak response to the pole and making it relatively pronounced whilst not affecting its
amplitude.
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nominal background intensity for T > Tsc as the system dissolves into local, phase-incoherent
fluctuations of essentially zero relative amplitude above Tsc ∼ T ∗.
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